Multivariable analysis

Multivariable Analysis

Zambelli Lorenzo BSc Applied Mathematics

November 2021-January 2022

1 Introduction

This notes are based on the material of the Lecture's notes and the course textbook.

2 Derivatives

Definition 1 Let $f : U \to \mathbb{R}^m$ be given where U is an open subset of \mathbb{R}^n . The function f is differentiable at $p \in U$ with derivative $(Df)_p = T$ if $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and

$$f(p+v) = f(p) + T(v) + R(v) \Rightarrow \lim_{\|v\| \to 0} \frac{R(v)}{\|v\|} = 0$$

We say that the Taylor remainder R is sublicar because it tends to 0 faster than ||v||.

Remark: Df is the total derivative or Frechet derivative and if the function is differentiable at U then the map $x \mapsto (Df)_x$ defines a function

$$Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$$

where $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is the set of linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$

Theorem 2 If f is differentiable at p then it unambiguously determines $(Df)_p$ according to the limit formula, valid for all $u \in \mathbb{R}^n$,

$$(Df)_p(u) = \lim_{t \to 0} \frac{f(p+tu) - f(p)}{t}$$

Definition 3 If f is differentiable at p, then for all basis vector $e_i \in \mathbb{R}^n$ (orthonormal),

$$\frac{\partial f_i}{\partial x_j}\Big|_p = \lim_{t \to 0} \frac{f_i(p + te_j) - f_i(p)}{t}$$

are the ij^{th} partial derivative of f at p if the limit exists.

Definition 4 (Jacobian Matrix) If f is differentiable (in coordinates: $f = f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n)$), then

$$(Df)_p = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

where the rows of $Df|_p$ are the transpose of the gradient of f_i at p for all $i \in \{1, ..., m\}$ $(\nabla^T f_i(p))$

Corollary 5 If the total derivative exists then the partial derivatives exist and they are the entries of the matrix that represents the total derivative

Remark: Do not confuse the total derivative $Df|_p$ with the direction derivatives of f at $p \in U$ which is the limit, if exists

$$\nabla_p f(u) = (Df)_p(u) = \lim_{t \to 0} \frac{f(p+tu) - f(p)}{t}$$

If the *i*, *j*-th partial derivatives of *f* at *p* exist for all $i \in \{1, ..., m\}$, then together they form the directional derivative of *f* in this specific e_i direction.

Remark: If f is differentiable, then

$$\nabla_p f(u) = \nabla f(p) \cdot u = \frac{\partial f}{\partial x_1} u_1 + \dots + \frac{\partial f}{\partial x_n} u_n$$

Proposition 6 Let \mathbb{R}^n and two norm $\|\cdot\|_a$, $\|\cdot\|_b$, then

 $\exists r_1, r_2 > 0$ s.t. $\forall v \quad r_1 \|v\|_a \le \|v\|_a \le r_2 \|v\|_b$

Theorem 7 Differentiability implies continuity

Theorem 8 If the partial derivatives of $f : U \to \mathbb{R}^m$ exist and are continuous then f is differentiable.

Theorem 9 Let f and g be differentiable. Then

- (a) D(f+cg) = Df + cDg
- (b) D(constant) = 0 and D(T(x)) = T where T is a linear map.
- (c) $D(g \circ f) = Dg \circ Df$ Chain Rule
- (d) D(fg) = Dfg + fDg Leibniz Rule

Theorem 10 A function $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$ if and only if each of its components f_i is differentiable at p. Furthermore, the derivative of its i^{th} component is the i^{th} component of the derivative

Theorem 11 (Mean Value Theorem) If $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable on U and the segment [p,q] is contained in U then

$$||f(q) - f(p)|| \le M ||q - p||$$

where $M = \sup\{\|(Df)_x\| : x \in (p,q) \subset U\}.$

Theorem 12 (C^1 Mean Value theorem) If $f : U \to \mathbb{R}^m$ is of class C^1 (its derivative exists and is continuous) and if the segment $[p,q] \subset U$ then

$$f(q) - f(p) = \int_0^1 (Df)_{p+t(q-p)} dt(q-p)$$

where the integral is the average derivative of f on the segment. Note that conversely it holds too.

Corollary 13 Assume that U is connected and open. If $f : U \to \mathbb{R}^m$ is differentiable and for each point $x \in U$ we have $(Df)_x = 0$ then f constant.

3 Higher Derivatives

The derivative $D^k f \ \forall k \in \mathbb{N}$ is the same sort of thing that f, namely a function from a open subset of a vector space into another vector space.

Definition 14 Assume $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable in U, then f is second differentiable at $q \in U$ if $Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is differentiable at $q \in U$

Remark: The second derivative at p is a linear map from \mathbb{R}^n into \mathcal{L} . For each $v \in \mathbb{R}^n$, $(D^2 f)_p(v)$ belongs to \mathcal{L} and therefore is a linear transformation $\mathbb{R}^n \to \mathbb{R}^m$ so $(D^2 f)_p(v)(w)$ is bilinear and we write it as $(D^2 f)_p(v, w)$. The higher derivatives are defined in the same way.

Remark: If f second-differentiable on U then $x \mapsto (D^2 f)_x$ defines a map

$$D^2 f: U \to \mathcal{L}^2 = \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \cong \mathcal{L}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^m)$$

where \mathcal{L}^2 is the vector space of bilinear maps $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$

Remark: Let

$$||f(v)|| = \sup\left\{\frac{||f|| ||v||}{||v||} : v \in \mathbb{R}\right\}$$

then

$$\begin{aligned} \|Df(v)\| &\leq \|Df\| \|v\| \\ \|D^2 f(v)\| &\leq \|D^2 f\| \|v\|^2 \\ \|D^k f(v)\| &\leq \|D^k f\| \|v\|^k \, k \in \mathbb{N} \end{aligned}$$

Theorem 15 If $(D^2 f)_p$ exists then $(D^2 f_k)_p$ exists, the second partials at p exist, and

$$(D^2 f_k)_p(e_i, e_j) = \frac{\partial^2 f_k(p)}{\partial x_i \partial x_j}$$

Conversely, existence of the second partials implies existence of $(D^2 f)_p$, provided that the second partials exist at all points $x \in U$ near p and are continuous at p

Theorem 16 If $(D^2f)_p$ exists then it is symmetric: for all $v, w \in \mathbb{R}^n$ we have

$$(D^2 f)_p(v, w) = (D^2 f)_p(w, v)$$

Corollary 17 Corresponding mixed second partials of a second-differentiable function are equal,

$$\frac{\partial^2 f_k(p)}{\partial x_i \partial x_j} = \frac{\partial^2 f_k(p)}{\partial x_j \partial x_i}$$

Corollary 18 If f is differentiable on U, $\frac{\partial^2 f}{\partial x_i \partial x_j}$ exist on U and are continuous at p, then

$$\frac{\partial^2 f^k}{\partial x_i \partial x_j} = \frac{\partial^2 f^k}{\partial x_j \partial x_i} \quad \forall i, j, k$$

Corollary 19 The r^{th} derivative, if it exists, is symmetric: Permutation of the vectors $v_1, ..., v_r$ does not effect the value of $(D^r f)_p(v_1, ..., v_r)$. Corresponding mixed higher-order partials are equal.

3.1 Smoothness class

Definition 20 $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is of class C^k on U if $f, Df, D^2f, ..., D^kf$ exist on U and D^kf is continuous on U

Definition 21 $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is of class C^{∞} if $f \in C^k \ \forall k \in \mathbb{N}$

Corollary 22 $f \in C^k$ (or C^{∞}) iff all partial derivatives up to order k (or for all partial derivatives) exist and are continuous.

Consider the set $C^k(U, \mathbb{R}^m)$ of C^k maps on U, for which the following norm is bounded

$$||f||_{C^k} := \max_{0 \le i \le k} \sup_{x \in U} ||D^i f|_x||$$

Theorem 23 $(C^k(U, \mathbb{R}^m), \|\cdot\|_{C^k})$ is a Banach space for all $k < \infty$. A sequence of functions $f_n \in C^k(U, \mathbb{R}^m)$ converges to $f \in C^k(U, \mathbb{R}^m)$ in $\|\cdot\|_{C^k}$ iff

$$f_n \rightrightarrows f, \cdots, D^k f_n \rightrightarrows D^k f$$

on U (uniform converges of f and its differentials up to order k)

Corollary 24 ($C^k - M$ test) Let $f_n \in C^k(U, \mathbb{R}^m)$ be such that $||f_n||_{C^k} \leq a_n$, where $\sum_{n=1}^{\infty} a_n$ converges. Then $\sum_{n=1}^{\infty} f_n$ converges to a function $f \in C^k(U, \mathbb{R}^m)$. Moreover, for all $s \leq k$:

$$D^2 f = \sum_{n=1}^{\infty} D^2 f_n$$

term by term differentiable is valid for all $s \leq k$.

4 Taylor's theorem

Theorem 25 (Taylor's theorem) Let $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ be of class C^N on U. Let $[p, p+v] \subset U$. then

$$f(p+v) = f(p) + \sum_{k=1}^{N-1} \frac{1}{k!} D^k f|_p(\underbrace{v...v}_{k \text{ times}}) + R_{N-1}(f,v)$$

where

$$R_{N-1}(f,v) = \int_0^1 \frac{(1-t)^{N-1}}{(N-1)!} D^N f|_{p+tv}(v...v) dt$$

Remark: When N = 1, we get the C^1 mean value theorem

Corollary 26 Under the assumptions of the theorem,

$$f(p+v) = f(p) + \sum_{k=1}^{N-1} \frac{1}{k!} D^k f|_p(\underbrace{v...v}_{k \text{ times}}) + o(||v||^N)$$

where $o(\|v\|^n) = f(v) \Leftrightarrow f(v)/\|v\|^n \to 0$ as $\|v\|^n \to 0$

Remark: Let x = v + p so that $v_i = (x - p)_i$. In two dimension with $x_1 = x$ and $x_2 = y$

$$f(x) = f(p) + \frac{\partial f}{\partial x}(p)(x - x_0) + \frac{\partial f}{\partial y}(p)(y - y_0) + \cdots$$

5 Flat vs Analytic functions

In the previous section we have discuss the Taylor expansion and we learn that given $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ (for simplicity m = 1) the Taylor's theorem holds up to any order. In general, the series doesn't have to converge. Moreover, if the series does converge, it doesn't have to converge to a given function.

Definition 27 When a function f have $\forall k \in \mathbb{N}$ $D^k f|_0 = 0$ and is smooth, then such f is called flat.

Definition 28 A function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is (real) analytic if $\forall p_0 = (x_1^0 \dots x_n^0) \in U$

$$f = \sum_{k_1=0}^{\infty} \cdots \sum_{k_n=0}^{\infty} c_{k_1,\cdots,k_n} (x_1 - x_1^0)^{k_1} \cdots (x_n - x_n^0)^{k_n}$$

convergent power series in a neighbourhood of p_0 . Alternatively, a function f is (real) analytic on U if $f \in C^{\infty}$ on U and the Taylor series

$$\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i_1, \cdots, i_k} \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} (x_{i_1} - x_{i_1}^0) \cdots (x_{i_k} - x_{i_k}^0)$$

converges to f in a neighbourhood of $p_0 = (x_1^0 ... x_n^0)$ for all $p_0 \in U$ (note that the series are local).

5.1 Relation with complex analysis

Definition 29 $f: U \subset \mathbb{C}^n \to \mathbb{C}$ is holomorphic if f is \mathbb{R} differentiable on $U \subset \mathbb{C}^n \cong \mathbb{R}^{2n}$ and $\frac{\partial f}{\partial \overline{z_i}} = 0$ for all j = 1, ..., n where

$$\frac{\partial}{\partial z_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right)$$
$$\frac{\partial}{\partial \overline{z_j}} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right)$$

 $z_j = x_j + iy_j$. This implies that $Df|_p$ is complex linear at every $p \in U$.

Theorem 30 f is holomorphic on U iff near every point it can be represented by a convergent power series

Corollary 31 Holomorphic functions $F : \mathbb{C}^n \to \mathbb{C}$ restricted to \mathbb{R}^n are real-analytic ($Ref(Rez_1...Rez_n)$) is real analytic). Conversely, a real analytic function $h : \mathbb{R}^n \to \mathbb{R}$ admits (at least locally) a holomorphic extension

6 Find extrema of a function

Definition 32 Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be a function. It is said to have a local minimum (resp., maximum) at $p_0 \in U$ if \exists a small neighborhood $p_0 \in V \subset U$ such that

$$f(p) \ge f(p_0), \quad resp. f(p) \le f(p_0)$$

for all $p \in V$. p_0 is a strict local minimum (resp. maximum) if

$$f(p) > f(p_0), \quad resp. f(p) < f(p_0)$$

for all $p \in V \setminus \{p_0\}$.

Definition 33 Local minima and maxima are called extrema of a function

Proposition 34 Consider a function $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Assume that $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_2}$ exist at a point $p_0 \in U$. If p_0 is a local extremum of f, then

$$\left. \frac{\partial f}{\partial x_i} \right|_{p_0} = 0, \, i = 1, ..., n$$

Remark: Points where

$$abla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

vanishes are called critical points. They don't have to be minima or maxima

Theorem 35 Let $f : U \subset \mathbb{R}^n \to \mathbb{R}$ be of class C^2 in a neighbourhood of $p_0 \in U$ which is a critical point of $f(\nabla f|_{p_0} = 0)$. If the Hessian

$$\left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{p_0} \in Mat(n \times n, \mathbb{R})$$

is positive (resp., negative) definite, i.e. the eigenvalues are positive (resp. negative) then p_0 is a local minimum (resp., maximum). If the eigenvalues are both positive and negative, then we have a saddle point. Instead, if the eigenvalues are 0 then we do not have enough information to tell.

Remark: To check positive/negative definiteness, one can use Sylvester's criterion from Linear algebra

7 Implicit function theorem

Definition 36 Two open subsets V_1 and V_2 of \mathbb{R}^n are called $C^k(resp., C^{\infty})$ -diffeomorphic if there exists a bijection $f: V_1 \to v_2$ such that f and f^{-1} are of class $C^k(resp., C^{\infty})$.

Remark: If f is a bijection and f and f^{-1} are C^0 , then f is called a homeomorphism

Theorem 37 (Implicit Function Theorem) Let U be an open subset of $\mathbb{R}^n \times \mathbb{R}^m$ and $F = (f_1, ..., f_m) : U \to \mathbb{R}^m$ be of class $C^k(C^\infty)$, $k \ge 1$, on U. Consider the following equation

$$F(x,y) = z_0$$

where $z_0 \in \mathbb{R}^m$. If there exists $(x_0, y_0) \in U$ with $F(x_0, y_0) = z_0$ and the $m \times m$ matrix

$$B = \frac{\partial f_i}{\partial y_j}\Big|_{(x_0, y_0)}$$

is invertible, then the equation admits a unique solution y = g(x) near (x_0, y_0) . Furthermore, g is $C^k(C^{\infty})$ **Theorem 38 (Implicit Function Theorem 2)** If the mapping $F : U \to \mathbb{R}^n$ defined in a neighborhood U of the point $(x_0, y_0) \in \mathbb{R}^{m+n}$ is such that

- $F \in C^{(p)}(U, \mathbb{R}^n), p \ge 1$
- $F(x_0, y_0) = 0$
- $F'_{y}(x_0, y_0)$ is an invertible matrix

then there exists am (m+n) dimensional interval $I = I_x^m \times I_y^n \subset U$, where

$$I_x^m = \{ x \in \mathbb{R}^m \mid |x - x_0| < \alpha \} \quad I_y^n = \{ y \in \mathbb{R}^n \mid |y - y_0| < \beta \}$$

and a mapping $f \in C^{(p)}(I_x^m, I_u^n)$ such that

$$F(x,y) = 0 \Leftrightarrow y = f(x)$$

for any point $(x, y) \in I_x^m \times I_y^n$ and

$$f'(x) = -\frac{F'_x(x, f(x))}{F'_u(x, f(x))}$$

Theorem 39 If $h: U \subset \mathbb{R}^n \to \mathbb{R}^n$ is $C^k(C^\infty)$, $k \ge 1$ and $Dh|_{x_0}$ is invertible, then h is a C^k -diffeomorphism near x_0 : there exists a small open neighbourhood $x_0 \in U_1 \subset U$ such that $h: U_1 \to U_2 = h(U_1)$ is a C^k -diffeomorphism. In particular, U_2 is open and $h|_{U_1}$ is an open map (for any V an open subset pf U_1 , the image h(V) is open)

8 Banach Fixed point Theorem

Definition 40 (Lipschitz) A function f is Lipschitz in U w.r.t the variables $x = (x_1, ..., x_n)$ and Lipschitz constant L if

$$||f(x) - f(y)|| \le L||x - y|$$

for all $x, y \in U$.

Similarly, f is said to be locally Lipschitz in U w.r.t. $x = (x_1, ..., x_n)$ if for every point $x_0 \in U$ there exists a neighbourhood $x_0 \in V \subset U$ such that

$$||f(x) - f(y)|| \le L^V ||x - y||$$

on V. In other words, f is Lipschitz on V

Theorem 41 (Banach Fixed-point Theorem) Let (M,d) be a complete metric space. Let $f: M \to M$ be such that

$$d(f(q), f(p)) \le Kd(q, p)$$

for all $q, p \in M$, where k < 1 is a constant not depending on q and $p \in M$. Then f has a unique fixed point $p_0 \in M$, i.e.

$$f(p_0) = p_0 \quad f(p) = p \Rightarrow p = p_0$$

9 Ordinary Differential equations

Definition 42 Let $t \in \mathbb{R}$ and $F : U \subset \mathbb{R}^{n+1} \to \mathbb{R}$ be a function of n+1 variables. An ordinary differential equation (ODE) of n-th order is an equation of the form

$$F(t, x, x', x^{"}, ..., x^{(n)}) = 0$$

where t is the independent variable, x = x(t) is a function of t and $x', x'', \dots, x^{(n)}$ are its derivatives.

A function x = x(t) is a solution of the ODE if the substitution of $x(t), x'(t), ..., x^{(n)}(t)$ into F makes the ODE hold identically

Remark: The above equation is implicit and therefore the ODE is said to be in implicit form. An *n*-th order ODE is said to be in explicit form if it can be written as follows

$$x^{(n)} = f(t, x, x', ..., x^{(n-1)})$$

Definition 43 Let $t \in \mathbb{R}$ and $f_i : U \subset \mathbb{R}^{n+1} \to \mathbb{R}$, i = 1, ...n, be functions of n+1 variables. A first order system of differentiable equations (in explicit form) is a set of n equations

$$\begin{cases} x'_1 = f_1(t, x_1, ..., x_n) \\ \vdots & \vdots \\ x'_n = f_n(t, x_1, ..., x_n) \end{cases}$$

Or, in more compact notation,

$$x' = F(t, x), \quad F: U \subset \mathbb{R}^{n+1} \to \mathbb{R}^n$$

A solution of this ODE is a vector function

$$x = x(t) = (x_1(t) \cdots x_n(t))$$

that is differentiable on some interval $t \in (a, b) \subset \mathbb{R}$ and if substitution of x = x(t) into the x' = F(t, x) makes the equality hold trivially.

Definition 44 (Initial value problem) Initial value problem (IVP) asks for solution of x' = F(t, x) that passes through a given point $(t_0, x_0) \in U \subset \mathbb{R}^{n+1}$, i.e. $x(t_0) = x_0 \in \mathbb{R}^n$. The solution of the IVP is equivalent to the integral equation

$$x(t) = x_0 + \int_{t_0}^t F(t, x(t))dt$$

More precisely, assume $F \in C^0$ and let x = x(t) be a solution, then

$$x(t) = x(t_0) + \int_{t_0}^t x'(t)dt = x_0 + \int_{t_0}^t F(t, x(t))dt$$

Conversely, if x = x(t) is a continuous solution of

$$x(t) = x_0 + \int_{t_0}^t F(t, x(t))dt$$

Then, $x = x(t) \in C^1$, $x(t_0 = x_0 \text{ and } x'(t) = F(t, x(t))$.

9.1 Linear ODEs

Definition 45 A system of Linear ODEs is an explicit system of ODEs of the following form

$$x' = A(t)x + B(t)$$

where A is a time dependent $n \times n$ matrix and $B(t) \in \mathbb{R}^n$ is a time dependent vector

Definition 46 A linear system is called homogeneous if B(t) = 0, and otherwise it is called inhomogeneous

Definition 47 A linear system is said to have constant coefficients if $A(t) = A(t_0)$ and $B(t) = B(t_0)$, i.e. they do not depend on t

Theorem 48 Consider a linear system

$$x' = A(t)x$$

where $A = A(t) : (a,b) \subset \mathbb{R} \to Mat(n \times n, \mathbb{R})$ is continuous. Then the set of solutions is a vector space isomorphic to \mathbb{R}^n .

Theorem 49 Consider a linear system x' = A(t)x + B(t), where $A = A(t) : (a, c) \subset \mathbb{R} \to Mat(n \times n, \mathbb{R})$ and $B = B(t) : (a, c) \subset \mathbb{R} \to \mathbb{R}^n$ are C^0 . Assume $x^{inh} = x^{inh}(t)$ is a solution of the inhomogeneous system and $x^h = x^h(t)$ is an arbitrary solution of the homogeneous system x' = A(t)x. Then, $x = x^h(t) + x^{inh}(t)$ is a solution of x' = A(t)x + B(t)

Remark: The difference between two solutions of the inhomogeneous system is a solution of the homogeneous one.

Proposition 50 Consider an IVP

$$x' = Ax \quad x(0) = x_0 \in \mathbb{R}^n$$

where A has constant coefficients. Then it can be exactly solved and the solution has the form

$$x(t) = e^{At} x_0$$

where e^{At} is the exponential of an $n \times n$ matrix At, defined by series

$$\exp\{At\} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k$$

Remark: To solve a particular ODE, it is helpful to use the Jordan decomposition of A. For more info look in the lecture notes of Linear system

Theorem 51 (Existence and uniqueness) Let $F = F(t, x) : U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous on U and locally Lipschitz on U w.r.t $x = (x_1, ..., x_n)$. If $(t_0, x_0) \in U$, then the IVP

$$\begin{cases} x' = F(t, x) \\ x(t_0) = x_0 \end{cases}$$

has a unique solution, which can be extended to the boundary of U

Theorem 52 Let $F : (d, c) \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous. Take a segment $[a, b] \subset [d, c]$ and assume that F is globally Lipschitz on $[a, b] \times \mathbb{R}^n$ w.r.t $x \in \mathbb{R}^n$. Then the IVP

$$\begin{cases} x' = F(t, x) \\ x(a) = x_0 \end{cases}$$

has a unique solution defined on [a, b].

Corollary 53 Consider a linear system of 1 - st order ODEs x' = A(t)x + B(t), where $A: (d,c) \to Mat(n \times n, \mathbb{R})$ and $B: (d,c) \to \mathbb{R}^n$ are continuous. Then the IVP, $x(t_0) = x_0$ where $t_0 \in (d,c)$ has a unique solution on (d,c) for all initial conditions $x_0 \in \mathbb{R}^n$

Theorem 54 (Peano existence theorem) If $F : U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous on U, then every IVP

$$\begin{cases} x' = F(t, x) \\ x(t_0) = x_0 \end{cases}$$

where $(t_0, x_0) \in U$ has a (possibly non-unique) solution.

Theorem 55 (Separations of variables for 1-d ODEs) Consider an ordinary differential equation of the form

$$x' = g(x)f(t)$$

where $g: U \subset \mathbb{R} \to \mathbb{R}$ is C^0 and non-zero on U and $f: V \subset \mathbb{R} \to \mathbb{R}$ is C^0 . Then every initial value problem

$$\begin{cases} x' = g(x)f(t) \\ x(t_0) = x_0 \end{cases}$$

where $(t_0, x_0) \in U \times V$. has a unique local solution, which can moreover be obtained by solving

$$\int_{x_0}^x \frac{dx}{g(x)} = \int_{t_0}^t f(t)dt$$

for x as a function of t

Definition 56 Any set of n linearly independent solutions $x_1(t), ..., x_n(t)$ is called a fundamental system of solutions; the matrix X(t), where $X(t) = (x_1(t), ..., x_n(t))$, is also called a fundamental system or a fundamental matrix.

Remark: Any solution x(t) of x' = A(t)x cen be written as

$$x(t) = X(t) \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

where c_i are constant for all $i \in \{1, ..., n\}$.

Remark: Every fundamental matrix X = X(t) solves the matrix equation

$$X' = A(t)X$$

and that it can be written as

$$X(t) = X^E(t) \cdot C$$

where C is a constant and non-degenerate $n \times n$ matrix and $X^{E}(t)$ is the unique solution of matrix IVP

$$(X^{E})' = A(t)X^{E}, \quad X^{E}(t_{0}) = E$$

where E is the identity matrix.

Definition 57 Let Y = Y(t) be a solution to the matrix equation X' = A(t)X. The (timedependent) determinant of Y(t) is called the Wronskian determinant or Wronskian of Y(t).

Theorem 58 Let A = A(t) be continuous and let X = X(t) be a solution of the matrix equation X' = A(t)X. Then X(t) is a fundamental matrix iff the Wronskian w(t) of X(t) is non-zero. Moreover, w(t) satisfies the differential equation

$$w' = (trA(t))w$$

where trA(t) is the trace of A(t). Hence,

- $w(t) = w(t_0) \exp\left\{\int_{t_0}^t tr(A(s))ds\right\}$
- $det(X^E(t)) = \exp\left\{\int_{t_0}^t tr(A(s))ds\right\}$

where $X^{E}(t)$ solves X' = A(t)X, $X(t_{0}) = E$. In particular, w(t) is either identically 0 or it is non-zero for every t

9.2 Variation of constant

Consider an inhomogeneous system

$$x' = A(t)x + B(t)$$

where

$$A: (c,d) \to Mat(n \times n, \mathbb{R})$$
$$B: (c,d) \to \mathbb{R}^n$$

are continuous. Let X(t) be the fundamental matrix for the homogeneous equation x' = A(t)x. In the variation of constant method, the constants in

$$X(t) = c = X(t) \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

which is the general solution to x' = A(t)x, are varied.

Definition 59 Given the above inhomogeneous system and fundamental matrix, then

$$c(t) = c(t_0) + \int_{t_0}^t X^{-1}(s)B(s)ds$$

and the general solution of the inhomogeneous equation has thus the form

$$X(t)\left(c(t_0) + \int_{t_0}^t X^{-1}(s)B(s)ds\right)$$

Moreover, to solve the IVP (with $x(t_0) = x_0$) one takes X(t) to be such that $X(t_0) = E$ and sets $c_0 = x_0$.

9.3 Vector fields and their flows

Consider a system of 1 - st order ODEs x' = F(x). Where $F = (f_1 \dots f_n) : U \subset \mathbb{R}^n \to \mathbb{R}^n$ is of class C^k . The map F is also called a C^k vector field since it assigns to each point $x(x_1...x_n)$ a vector $F(x) \in \mathbb{R}^n$.

Another representation of a vector field is that of a map

$$V: U \to U \times \mathbb{R}^n$$
, $V(x) = (x, F(x))$

which assigns to every point $x \in U$ a vector $F(x) \in \mathbb{R}^n$ attached to x.

Remark: Geometrically a solution of the ODE x' = F(x) is a curve x = x(t) that is tangent to the vector field at every point and, moreover, the magnitude and direction of x'(t) are equal to that of F(x(t)).

Remark: ODEs are sometimes written as x' = V(x), where V is a vector field (or x' = V(t, x) in time-dependent case).

Definition 60 When F = F(x) (V = V(x)) is independent of t, the ODE x' = F(x) is called **autonomous**

Definition 61 The flow of a (at least Lipschitz) vector field is a (locally defined) map

$$g^t(x): (-\epsilon, \epsilon) \times U \to \mathbb{R}^n$$

as follows: $g^t(x)$ is the unique (maximal) solution of x' = F(x) with $g^0(x) = x$.

Proposition 62 For an autonomous ODE x' = F(x) and $t, s \in \mathbb{R}$, $|t| < \epsilon$, $|s| < \epsilon$, $|t+s| < \epsilon$, one has

$$g^{t+s}(x) = g^t(g^s(x)) = g^s(g^t(x))$$

Corollary 63 Assume that solutions of x' = F(x) are defined for all $t \in \mathbb{R}$. Then the flow $g^t(x)$ defines a group homomorphism

$$t \in \mathbb{R} \to g^t(\cdot)$$

from \mathbb{R} into the group of maps from $U \subset \mathbb{R}^n$ to itself

Remark: if $F \in C^k$ then

$$g^t(x): (-\epsilon, \epsilon) \times U \to U$$

is of class at least C^{k-1}

Theorem 64 Consider a C^{∞} vector field V(x) on $U \subset \mathbb{R}^n$. Assume that all solutions of x' = V(x) are defined for all times $t \in \mathbb{R}^n$. Then the flow g^t of V

$$g^t(x): \mathbb{R} \times U \to U$$

is C^{∞} smooth. Moreover, for each fixed t_0 , the map

$$g^{t_0}(\cdot): U \to U$$

is a C^{∞} diffeomorphism.

10 Multiple integrals

Definition 65 Let $f: I^n = \prod_{i=1}^n [a_i, b_i] \to \mathbb{R}$ be a real-valued function. Consider a partition $P_i: a_i = x_0^i < x_1^i < \cdots < x_{k_i}^i = b_i$

of each segment $[a_i, b_i]$ and the resulting partition of the box I^n by smaller boxes $I^n_{i_1,\ldots,i_n}$,

$$I_{i_1,\dots,i_n}^n = [x_{i_1}^1, x_{i_1+1}^1] \times \dots \times [x_{i_n}^n, x_{i_n+1}^n]$$

Then, a Rieman Sum is a sum of the form

$$R(f, P, S) = \sum_{i_1=0}^{k_1-1} \cdots \sum_{i_n=0}^{k_n-1} f(S_{i_1,\dots,i_n}) \left| I_{i_1,\dots,i_n}^n \right|$$

where $S_{i_1,\ldots,i_n} \in I_{i_1,\ldots,i_n}^n$ are sample points and $\left|I_{i_1,\ldots,i_n}^n\right|$ is the volume of I_{i_1,\ldots,i_n}^n , i.e. the product of the lengths of its sides:

$$|x_{i_1+1}^1 - x_{i_1}^1| \times \dots \times |x_{i_n+1}^n - x_{i_n}^n|$$

Definition 66 A function $f: I^n = \prod_{i=1}^n [a_i, b_i] \to \mathbb{R}$ is called Rieamann-integrable on I^n with integral

$$J = \int \cdots \int f(x) dx^1 \cdots dx^r$$

if $\forall \epsilon > 0 \ \exists \delta > 0$ such that for all partitions P of I^n consisting of boxes $I^n_{i_1,\ldots,i_n}$ with diameter $d(I^n_{i_1,\ldots,i_n})$ less than δ and any choice of sample points S_{i_1,\ldots,i_n} , $S_{i_1,\ldots,i_n} \in I^n_{i_1,\ldots,i_n}$, for the corresponding Riemann sum

$$|J - R(f, P, S)| < \epsilon$$

In other words, f is Riemann integrable when the following limit exists

$$J := \lim_{d(p) \to 0} R(f, P, S)$$

where the limit is taken along all marked partitions (P, S) with the diameter $d(p) := \max_{i_1, \dots, i_n} d(I_{i_1, \dots, i_n}^n)$ tending to zero.

Proposition 67 If $f: I^n \to \mathbb{R}$ is Riemann-integrable, then it is bounded.

Definition 68 Consider a function $f: I^n \to \mathbb{R}$ and let P be a partition of I^n . Set

$$m_{i_1,...,i_n} := \inf_{x \in I_{i_1,...,i_n}} f(x) \quad M_{i_1,...,i_n} := \sup_{x \in I_{i_1,...,i_n}} f(x)$$

The sums

$$r(f,P) = \sum_{i_1=0}^{k_1-1} \cdots \sum_{i_n=0}^{k_n-1} m_{i_1,\dots,i_n} \left| I_{i_1,\dots,i_n}^n \right|$$
$$R(f,P) = \sum_{i_1=0}^{k_1-1} \cdots \sum_{i_n=0}^{k_n-1} M_{i_1,\dots,i_n} \left| I_{i_1,\dots,i_n}^n \right|$$

are called, respectively, Lower and Upper Darboux sums of f relative to P

Definition 69 Consider a function $f : I^n \to \mathbb{R}$ and let P be a partition of I^n . Then, the quantaties

$$\int_{-I^n} f dx^1 \cdots dx^n := \sup_P r(f, P)$$
$$-\int_{I^n} f dx^1 \cdots dx^n := \inf_P R(f, P)$$

are called, respectively, Lower and Upper integrals of f on I^n .

Remark: Note that the $\sup_{P}(\inf_{P})$ is taken with respect to all partitions P of I^{n}

Lemma 70 For all marked partitions (P, S), we have

- $r(f, P) \le R(f, P, S) \le R(f, P)$
- $r(f,P) \leq \int_{-I^n} f dx \leq \overline{\int}_{I^n} f dx \leq R(f,P)$

Theorem 71 (Darboux's criterion of Riemann integrability) A function $f : I^n \to \mathbb{R}$ is Riemann integrable iff f is bounded and the lower and upper integrals coincide

$$\int_{I^n} f dx = \int_{-I^n} f dx$$

Remark: For a bounded function, the lower and upper integrals of f always exist. This follows from the above lemma ii.

Definition 72 (zero set) A subset $Z \subset \mathbb{R}^n$ is a zero set (or of Lebesgue measure zero) if $\forall \epsilon > 0$ there exists a countable covering of Z by (open or equivalently closed) boxes I_j^n such that

$$\sum_{j} \left| I_{j}^{n} \right| < \epsilon$$

Proposition 73 Let $Z \subset \mathbb{R}^n$ be a zero set. Then $W \subset Z$ is also a zero set and a countable union of zero sets is again a zero set

Theorem 74 (Riemann-Lebesgue theorem/Lebesgue's criterion) A function $f : I^n \to \mathbb{R}$ is riemann integrable iff it is bounded and continuous almost everywhere on I^n , i.e., there exists a zero set $Z \subset I^n$ such that f is continuous on $I^n \setminus Z$

Definition 75 Let E be a bounded subset of \mathbb{R}^n and χ_E be the indicator function (takes value 1 if $x \in E$ and 0 otherwise). A function $f: E \to \mathbb{R}$ is Riemann integrable on E if the function $f \cdot \chi_E(x)$ is Riemann integrable on some box I^n containing E. The integral of f over E is then defined by

$$\int_E f \, dx := \int_{E \subset I^n} f \cdot \chi_E \, dx$$

Proposition 76 If I_1^n and I_2^n contain E, then $\int_{E \subset I_1^n} f \cdot \chi_E dx$ and $\int_{E \subset I_2^n} f \cdot \chi_E dx$ either both exist and are equal or both do not exist.

Theorem 77 Let $E \subset \mathbb{R}^n$ be a bounded subset of \mathbb{R}^n such that the boundary is a zero set. Then a function $f: E \to \mathbb{R}$ is Riemann integrable iff f is continuous almost everywhere (i.e. f continuous outside a zero set $Z \subset E \subset \mathbb{R}^n$).

Moreover, if E is bounded and ∂E is not a zero set, then χ_E is not Riemann integrable on E.

Definition 78 A volume of $E \subset \mathbb{R}^n$ (if exists) is the Riemann integral

$$\int_E 1 \cdot dx^1 \cdots dx^n$$

Theorem 79 (Change of variables formula) Let $\psi : U \to W$ be a C^1 -diffeomorphism between subsets U and W of \mathbb{R}^n . Let E be a bounded subset of \mathbb{R}^n such that $\overline{E} \subset W$. If f is Riemann integrable on E, then $g := (f \circ \psi) \cdot |\det(D\psi)|$ is Riemann integrable on $\psi^{-1}(E)$ and

$$\int_{\psi^{-1}(E)} (f \circ \psi) \cdot |\det(D\psi)| \, dx = \int_E f \, dy, \quad y = \psi(x)$$

Theorem 80 (Fubini's theorem) Assume that $E_1 \subset \mathbb{R}^k$ and $E_2 \subset \mathbb{R}^m$ are bounded and let $f: E_1 \times E_2 \to \mathbb{R}$ be Riemann integrable. Then both $\int_{-E_1} f(x, y) dx$ and $\int_{-E_1} f(x, y) dx$ exists and integral on E_2 with respect to y, then

$$\int_{E_2} \left(\int_{-E_1} f(x,y) dx \right) dy = \int_{E_2} \left(\int_{-E_1} f(x,y) dx \right) dy = \int_{E_1 \times E_2} f(x,y) dx dy$$

where $x = (x^1, ..., x^k)$ and $y = (x^{k+1}, ..., x^{k+m})$.

Corollary 81 Assume that $E_1 \subset \mathbb{R}^k$ and $E_2 \subset \mathbb{R}^m$ are bounded and let $f : E_1 \times E_2 \to \mathbb{R}$ be Riemann integrable. Then

$$\iint_{E_1 \times E_2} f(x, y) dx dy = \int_{E_2} \left(\int_{-E_1} f(x, y) dx \right) dy = \int_{E_1} \left(\int_{-E_2} f(x, y) dy \right) dx$$

Corollary 82 Under preceding assumption $\int_{E_1} f(x, y) dx$ exists for almost all y. Similarly, $\int_{E_2} f(x, y) dy$ exists for almost all x

Corollary 83 If $f: I_1^k \times I_2^m \to \mathbb{R}$ and f is continuous, then the iterated integrals exist and are equal to each other.

Corollary 84 Assume $D \subset \mathbb{R}^{n-1}$ bounded, let $\psi_1, \psi_2 : D \to \mathbb{R}$ and

$$E = \{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid x \in D \,\psi_1(x) \le y \le \psi_2(x)\}$$

and is bounded. If $f: E \to \mathbb{R}$ is integrable then

$$\int_E f(x,y)dxdy = \int_D \int_{\psi_1}^{\psi_2} f(x,y)dydx$$

Corollary 85 (Cavalieri's principle) Let $E \subset \mathbb{R}^{n-1}$ be bounded and let ∂E be a zero set. Then

$$Vol(E) = \int_E dx^1 \cdots dx^{n-1} dy = \int_{I_y^1} Vol(E_y) dy$$

where $E \subset I_x^{n-1} \times I_y^1$, $E_{y_0} = \{(x, y) \in E | y = y_0\}$ is a y-slice of E and $Vol(E_{y_0})$ is its (n-1)-volume; more precisely, any number between $\int_{-E_{y_0}} 1 \cdot dx$ and $\overline{\int}_{E_{y_0}} 1 \cdot dx$

Remark: Note that by corollary, $\int_{I_x^{n-1}} \chi_{E_y} dx$ exists almost everywhere, so $Vol(E_y)$ is well defined almost everywhere and also ∂E_y is a zero set in \mathbb{R}^{n-1} for almost all y

Remark: The notion of the volume: $Vol(E) = \int_E 1 \cdot dx$, as follows from the Riemann Lebesgue theorem, is well defined precisely for those bounded sets E, for which ∂E is a zero set. Note also that it is invariant under Euclidean isometries by the change of variables formula

10.1 Improper Integrals

Definition 86 Let $E = \bigcup_{j=1}^{\infty} E_j$, where $E_j \subset E_{j+1} \subset \mathbb{R}^n$, each E_j is bounded and for each $j, \partial E_j$ is a zero set. Assume that $f : E \to \mathbb{R}$ is integrable on E_j for all j and

$$J = \lim_{j \to \infty} \int_{E_j} f \, dx$$

exists and doesn't depend on E_j , then J is the improper integral of f on E (the same notation $\int_E f \, dx = J$ is used)

Proposition 87 If $E = \bigcup_{j=1}^{\infty} E_j$, where $E_j \subset E_{j+1} \subset \mathbb{R}^n$, each E_j is bounded and for each j, ∂E_j is a zero set, and E is also bounded with ∂E a zero set, then

- $\lim_{j\to\infty} Vol(E_j) = Vol(E)$
- For every integrable function $f: E \to \mathbb{R}$, its restriction to E_i is also integrable and

$$\lim_{j \to \infty} \int_{E_j} f \, dx = \int_E f \, dx$$

Remark: This proposition shows that improper Riemann integrals generalise Riemann integrals

Proposition 88 If $f, g: E \to \mathbb{R}$ are both integrable on E_j (E_j bounded and ∂E_j a zero set), $|f| \leq g$ on E and $\lim_{j\to\infty} \int_{E_j} g \, dx$ exists, then

$$\int_{E} g \, dx, \quad \int_{E} |f| \, dx, \quad \int_{E} f \, dx$$

exist

Definition 89 Assume that for all $y \in [c, d) \subset \mathbb{R}$, the following improper integral exists:

$$F(y) = \int_{a}^{b} f(x, y) dx$$

where $[a,b) \subset \mathbb{R}$ and b is possibly $+\infty$. It is assumed that on each segment $[a,c] \subset [a,b)$, a proper Riemann integral exists.

The improper integral converges uniformly on [e, d) if $\forall \epsilon > 0$ there exist a neighbourhood of the form (b_0, b) (or $(b_0, +\infty)$ where $b = +\infty$) such that $\forall c$ in this neighbourhood and $\forall y \in [e, d)$

$$\left|\int_{c}^{b} f(x,y)dx\right| < \epsilon$$

Theorem 90 Assume that f = f(x, y) and g = g(x, y), defined on $[a, b) \times [c, d)$ are integrable w.r.t x on all $[a, e) \subset [a, b)$ for all $y \in [c, d)$. If $|f(x, y)| \leq g(x, y)$ and $\int_a^b g(x, y)dx$ converges uniformly on [c, d), then so does the integral $\int_a^b f(x, y)dy$ (in particular, it is well defined $\forall y \in [c, d)$)

Theorem 91 If $f : [a, b) \times [c, d)$ is continuous, the integrals

$$\int_{a}^{b} f(x,y)dx \quad and \quad \int_{c}^{d} f(x,y)dy$$

converge uniformly w.r.t y on all $[c, e) \subset [c, d)$ and w.r.t x on all $[a, r) \subset [a, b)$, respectively, and there exists at least one iterated integral

$$\int_{c}^{d} \int_{a}^{b} |f| \, dx \, dy \quad or \quad \int_{a}^{b} \int_{c}^{d} |f| \, dy \, dx$$
$$\int_{c}^{d} \int_{a}^{b} f \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f \, dy \, dx$$

then

Theorem 92 If $f = f(x, y) : [a, b) \times [c, d] \rightarrow \mathbb{R}$ and its partial derivative with respect to y are continuous, the integral

$$\int_{a}^{b} f_{y}'(x,y) dx$$

converges uniformly on [c,d] and $\int_a^b f(x,y)dx$ converges for at least one y in [c,d], then $\int_a^b f(x,y)dy$ converges uniformly and

$$\frac{\partial}{\partial y}\int_{a}^{b}f\,dx = \int_{a}^{b}f'_{y}\,dx$$

Corollary 93 Let $f : [a,b] \times [c,d] \to \mathbb{R}$. Assume $f \in C^0$ and $\frac{\partial f}{\partial y}$ exists and is C^0 . Then

$$\int_a^b f(x,y) dx \in C^1(y)$$

and

$$\frac{\partial}{\partial y} \int_{a}^{b} f(x, y) dx = \int_{a}^{b} \frac{\partial}{\partial y} f(x, y) dx$$

11 Alternating k-linear forms

Definition 94 Given a vector space V over a field \mathbb{K} , its dual V^{*} is defied as

$$V^{\star} = \mathcal{L}(V, \mathbb{K})$$

the space of linear functions from V to \mathbb{K}

Remark: V^{\star} is itself a vector space over K.

Definition 95 Let V be finite-dimensional (and hence isomorphic to \mathbb{K}^n , $n < \infty$) and $e_1, ..., e_n \in V$ be a basis of V. The **dual basis** of $e_1, ..., e_n$ is the basis

$$e^1, \dots, e^n \in V^\star$$

of V^{\star} defined by the rule $e^{i}(e_{j}) = \delta^{i}_{j} \ \forall i, j \leq n$

Remark: δ_j^i is known to be the Kronecker delta and is equal to 1 when j = i and 0 otherwise.

Proposition 96 Let $e_1, ..., e_n$ be a basis of V. Then the dual basis $e^1, ..., e^n$ is indeed a basis of V^* . Moreover,

- 1. $v = \sum_{i=1}^{n} v^i e_i \Rightarrow v = \sum_{i=1}^{n} e^i(v) e_i$
- 2. for any $f \in V^{\star}$, $f = \sum_{i=1}^{n} f(e_i)e^i$

Definition 97 Elements of $V^* = \mathcal{L}(V, \mathbb{K})$ are called Linear functions or linear 1-forms or covectors

Definition 98 Given two vectors spaces V_1 and V_2 over a field \mathbb{K} , a function

$$\omega: V_1 \times V_2 \to \mathbb{K}$$

is called **bilinear** or a **bilinear form** if it is linear in each argument, that is, if

$$\begin{split} &\omega(\lambda v+u,s)=\lambda\omega(v,s)+\omega(u,s)\\ &\omega(v,\lambda s+r)=\omega(v,s)+\lambda\omega(v,r) \end{split}$$

for all $v, u \in V_1$; $s, r \in V_2$, and $\lambda \in \mathbb{K}$. The vector space of all bilinear maps $w : V_1 \times V_2 \to \mathbb{K}$ is denoted by $\mathcal{L}(V_1 \times V_2, \mathbb{K})$

Remark: Recall that the space $\mathcal{L}(V_1 \times V_2, \mathbb{K})$ is isomorphic to the space $\mathcal{L}(V_1\mathcal{L}(V_2, \mathbb{K}))$.

Definition 99 Given vectors spaces $V_1, ..., V_k$ over \mathbb{K} , a function $\omega : V_1 \times \cdots \times V_k \to \mathbb{K}$ is called **k-linear** or a k-linear form if it is linear in each argument, i.e., if $\forall i, 1 \leq i \leq k$ and $\forall v_j \in V_j \ j \neq i$

$$\omega(v_1, \dots, v_{i-1}, \cdot, v_{i+1}, \dots, v_k) : V_i \to \mathbb{K}$$

is linear. The space of k-linear maps is denoted by $\mathcal{L}(V_1 \times \cdots \times V_k, \mathbb{K}) \equiv \mathcal{L}(V_1, \mathcal{L}(V_2, \cdots \mathcal{L}(V_k, \mathbb{K}) \cdots))$

remark: More generally, one can consider k-linear maps with values in another vector space, rather than the field \mathbb{K} .

Definition 100 Let V be a real vector space. A k-linear map $\omega : V \times \cdots \times V \to \mathbb{R}$ is called alternating if for every permutation σ of $\{1, ..., k\}$ and every choice of $v_1, ..., v_k \in V$, we have

$$\omega(v_{\sigma(1)},\cdots,v_{\sigma(k)}) = sign(\sigma)\omega(v_1,\ldots,v_k)$$

The space of k-linear alternating maps $\omega: V \times \cdots \times V \to \mathbb{R}$ is denoted by $\bigwedge^k (V)^*$.

Theorem 101 The space $\bigwedge^k (V)^*$ is a vector space

11.1 Wedge product

Definition 102 Let V be a real vector space and α, β be two linear functions on V (i.e. elements of $V^* = \mathcal{L}(V, \mathbb{R})$). The wedge product of α and β is the map

$$\alpha \wedge \beta : V \times V \to \mathbb{R}$$

defined by

$$\alpha \wedge \beta(v_1, v_2) = \det \begin{bmatrix} \alpha(v_1) & \alpha(v_2) \\ \beta(v_1) & \beta(v_2) \end{bmatrix} = \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1)$$

Proposition 103 The wedge product of $\alpha \wedge \beta$ of two linear functions $\alpha, \beta \in V^* = \bigwedge^1(V)^*$ is an alternating bilinear form, i.e. an element of $\bigwedge^2(V)^*$

Definition 104 Let V be a real vector space and $\alpha_1, ..., \alpha_k$ be in $V^* = \bigwedge^1 (V)^*$. The wedge product of $\alpha_1, ..., \alpha_k$ is the map

$$\alpha_1 \wedge \dots \wedge \alpha_k : V \times \dots \times V \to \mathbb{R}$$

defined by

$$\alpha_1 \wedge \dots \wedge \alpha_k(v_1, \dots, v_k) = \det \begin{bmatrix} \alpha_1(v_1) & \cdots & \alpha_1(v_k) \\ \vdots & & \vdots \\ \alpha_k(v_1) & \cdots & \alpha_k(v_k) \end{bmatrix}$$

where $v_1, ..., v_k$ are arbitrary vectors in V

Proposition 105 The wedge product $\alpha_1 \wedge \cdots \wedge \alpha_k$ of k linear functions $\alpha_1, \cdots, \alpha_k \in V^* = \bigwedge^1(V)^*$ is an alternating k linear form, i.e., an element of $\bigwedge^k(V)^*$

Theorem 106 Let V be an n-dimensional real vector space and $e_1, ..., e_n$ be a basis of V. Then wedge products

$$e^{j_1} \wedge \dots \wedge e^{j_k}, \quad 1 \le i_1 < \dots < i_k \le n$$

form a basis of $\bigwedge^k(V)^*$ for $1 \le k \le n$. In particular, dim $(\bigwedge^k(V)^* = C_k^n$ (binomial coefficient) for $1 \le k \le n$. For k > n, $\bigwedge^k(V)^*$ has dimension zero

Definition 107 Let V be an n-dimensional real vector space and $e_1, ..., e_n$ basis of V. The wedge product of $\omega \in \bigwedge^k(V)^*$ and $\eta \in \bigwedge^l(V)^*$ is defined by

$$\omega \wedge \eta = \sum_{\substack{i_1 < \dots < i_k \\ j_1 < \dots < j_l}} \omega_{i_1,\dots,i_k} \eta_{j_1,\dots,j_l} e^{i_1} \wedge \dots \wedge e^{i_k} \wedge e^{j_1} \wedge \dots \wedge e^{j_l}$$

where

$$\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1,\dots,i_k} e^{i_1} \wedge \dots \wedge e^{i_k} \quad \eta = \sum_{j_1 < \dots < j_l} \eta_{i_1,\dots,i_k} e^{j_1} \wedge \dots \wedge e^{j_l}$$

Remark: In other words, one defines the wedge product of basic k-forms $e^{i_1} \wedge \cdots \wedge e^{i_k} \in \bigwedge^k(V)^*$ and $e^{j_1} \wedge \cdots \wedge e^{j_l} \in \bigwedge^l(V)^*$ as

$$e^{i_1} \wedge \dots \wedge e^{i_k} \wedge e^{j_1} \wedge \dots \wedge e^{j_l} \in \bigwedge^{k+l} (V)^*$$

and then extends this definition to arbitrary $\omega \in \bigwedge^k(V)^\star$ and $\eta \in \bigwedge^l(V)^\star$

Proposition 108 This defied wedge product is consistent with the wedge product of Linear functions defined above and is independent of the choice of the basis $e_1, ..., e_n \in V \cong \mathbb{R}^n$

Definition 109 Let V be a real vector space. The wedge product $\omega \wedge \eta$ of two alternating forms $\omega \in \bigwedge^k(V)^*$ and $\eta \in \bigwedge^l(V)^*$ is defined by

$$\omega \wedge \eta(v_1, ..., v_k, v_{k+1}, ..., v_{k+l}) = \sum_{\sigma} sign(\sigma)\omega(v_1, ..., v_k)\eta(v_{k+1}, ..., v_{k+l})$$

where $\sigma = (i_1, ..., i_{k+l} \text{ is a permutation of } \{1, ..., k+l\}$ such that $i_1 < \cdots < i_k$ and $i_{k+1} < \cdots < i_{k+l}$

Corollary 110 Let $\omega \in \bigwedge^k(V)^*$, $\eta \in \bigwedge^l(V)^*$ and $\phi \in \bigwedge^m(V)^*$. Then

- $(\omega \wedge \eta) \wedge \phi = \omega \wedge (\eta \wedge \phi)$
- $\omega \wedge \eta = (-1)^{kl} (\eta \wedge \omega)$
- The wedge product is linear in each of its arguments, e.g.:

$$\begin{split} &\omega \wedge (c\eta) = c(\omega \wedge \eta), \quad for \ c \in \mathbb{R} \\ &\omega \wedge (\eta + \phi) = \omega \wedge \eta + \omega \wedge \phi, \quad in \ case \ l = m \end{split}$$

11.2 Pull-Back

Definition 111 Let $f : V \to W$ be a linear map between real vector spaces V and W. The **pull-back** of an alternating k-linear form $\omega \in \bigwedge^k(W)^*$ is the alternating k-linear form $f^*\omega \in \bigwedge^k(V)^*$ defined by the rule

$$f^{\star}\omega(v_1, ..., v_k) = \omega(f(v_1), ..., f(v_k))$$

where $v_1, ..., v_k$ are arbitrary vectors in V

Proposition 112 Let $f: V \to W$ be a linear map between real vector spaces and let $\omega \in \bigwedge^k (W)^*, \eta \in \bigwedge^l (W)^*$. Then

- $f^{\star}\omega$ is an alternating k-linear form on V
- $f^star: \bigwedge^k (W)^{\star} \to \bigwedge^k (V)^{\star}$ is linear
- $f^s tar(\omega \wedge \eta) = f^* \omega \wedge f^* \eta$

Theorem 113 Let $f: U \to V$ and $g: V \to W$ be linear maps. Then $(g \circ f)^* = f^* \circ g^* : \bigwedge^k (W)^* \to \bigwedge^k (U)^*$

Differential forms

Definition 114 Let U be an open subset on \mathbb{R}^n . A function

$$\omega: U \times \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ factors}} \to \mathbb{R}, \quad \omega = \omega(x, v), x \in U, v \in \mathbb{R}^n$$

is called a **differential** k form if for all fixed $x \in U$, the function $\omega(x, \cdot) : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ is k-linear and alternating.

A differential k-form ω is C^m -smooth $(m \leq \infty)$ when it is C^m smooth as a function ω : $U \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}.$

Proposition 115 Let $\omega : U \times \mathbb{R}^{nk} \to \mathbb{R}$ be a differential k-form on U. Then there are unique functions

$$\omega_{i_1 \dots i_k} : U \to \mathbb{R}, \quad i_1 < \dots < i_k$$

such that

$$\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1 \dots i_k}(x) Dx^{i_1} \wedge \dots \wedge Dx^{i_k}$$

The k-form ω is C^m iff all functions $\omega_{i_1...i_k}$ are C^m

Remark: Differential forms ω naturally act on vector fields.

Definition 116 A differential k-form ω of class C^m on $U \subset \mathbb{R}^n$ is an alternating k-linear over $C^m(U)$ map

$$\omega: \mathcal{X}^m(U) \times \cdots \times \mathcal{X}^m(U) \to C^m(U)$$

where $\mathcal{X}^m(U)$ is the space of all C^m -vector fields on U and $C^m(U)$ is the space of all C^m -smooth functions on U

Proposition 117 Let $U \subset \mathbb{R}^n$ be open. If $\omega : U \times \mathbb{R}^{nk} \to \mathbb{R}$ is a differential k-form (in the sense of the first definition) of class C^m , then it induces an alternating k-linear over $C^m(U)$ map

$$\tilde{\omega}: \mathcal{X}^m(U) \times \cdots \times \mathcal{X}^m(U) \to C^m(U)$$

by setting $\tilde{\omega}(v_1, ..., v_k)(x) = \omega(x, F_1(x), ..., F_k(x))$ where $v_i(x) = (x, F_i(x))$. Conversely, every such map $\tilde{\omega}$ (differential k-form in the sense of the second definition) induces a C^m function

$$\omega: U \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$$

such that $\forall x \in U$, $\omega(x, \cdot)$ is k-linear and alternating, by setting $\omega(x_0, c_1, ..., c_k) = \tilde{\omega}(v_1, ..., v_k)(x_0)$, where the vector fields $v_i(x) = (x, F(x))$ are C^m on U and such that $F_i(x) = c_i$ in a small neighbourhood of $x_0 \in U$ (here $c_i \in \mathbb{R}^n$ are constant vectors)

11.3 Operations on differential forms

Definition 118 Let ω be a differential k-form on $U_2 \subset \mathbb{R}^m$ and let $f: U_1 \subset \mathbb{R}^n \to U_2 \subset \mathbb{R}^m$ be a C^1 map. The **pull-back** of ω under f is the differential k-form $f^*\omega$ on U_1 defined by

$$f^{\star}\omega(x, c_1, ..., c_k) = \omega(f(x), Df|_x(c_1), ..., Df|_x(c_k))$$

meaning that at each x, we have the pull-back of alternating k-linear forms under linear map df between the corresponding tangent spaces

Proposition 119 Let $f: U_1 \subset \mathbb{R}^n \to U_2 \subset \mathbb{R}^m$ be of class (at least) C^1 . The pull-back f^* is a linear map. Moreover, it respects the wedge product: if ω and η are differential k-forms on U_2 , then $f^*(\omega \wedge \eta) = f^*\omega \wedge f^*\eta$

Proposition 120 If $f : U_1 \subset \mathbb{R}^n \to U_2 \subset \mathbb{R}^m$ and $g : U_2 \to U_3 \subset \mathbb{R}^e$ are C^1 maps, then $(g \circ f)^* = f^* \circ g^*$

11.3.1 Exterior derivative

Definition 121 Let ω be a differential k-form on $U \subset \mathbb{R}^n$ of class C^m , $m \ge 1$. The exterior derivative $D^{ext}\omega$ of ω is the differential (k + 1)-form on U defined by

$$D^{ext}\omega = \sum_{i_1 < \dots < i_k} D\omega_{i_1 \dots i_k}(x) \wedge Dx^{i_1} \wedge \dots \wedge Dx^{i_k}$$

where

$$\omega = \sum_{i_1 < \ldots < i_k} \omega_{i_1 \ldots i_k}(x) Dx^{i_1} \wedge \cdots \wedge Dx^{i_k}$$

is the unique expansion of ω with respect to the basis k-forms $Dx^{i_1} \wedge \cdots \wedge Dx^{i_k}$, $i_1 < \ldots < i_k$

Proposition 122 The following properties of the exterior derivative D^{ext} hold:

• \forall differential k-forms ω and η of class C^1 and $\forall \lambda \in \mathbb{R}$, we have

$$D^{ext}(\lambda\omega + \eta) = \lambda D^{ext}\omega + D^{ext}\eta$$

i.e. D^{ext} is linear

• \forall diff. form ω and \forall function f of class C^1 ,

$$D^{ext}(f\omega) = Df \wedge \omega + fD^{ext}\omega$$

• \forall diff. form ω and \forall map F of class C^2 , we have

$$F^{\star}(D^{ext}\omega) = D^{ext}(F^{\star}\omega)$$

• \forall diff. form ω of class C^2 , $D^{ext}(D^{ext}\omega) = 0$

Remark: Note that for differential 0-forms of class C^1 , we have $D^{ext}f = Df$. Therefore, D^{ext} is an extension of the usual notion of the derivative to differential forms. Also note that unlike in the case of higher order derivatives $D^r f$ which might be non-zero for all $r \in \mathbb{N}$ we have that $D^{ext} \circ D^{ext} \equiv 0$, because of skew-symmetry of differential forms.

Note: In what follows, when considering differential forms we will use d to refer to both exterior derivative and 1-st differentials of functions. When talking about higher derivatives of maps, D will be used instead.

Definition 123 A C^1 differential k-form ω on $U \subset \mathbb{R}^n$ is called **closed** if $d\omega \equiv 0$ on U.

A C^1 differential k-form ω on $U \subset \mathbb{R}^n$ is called **exact** if there exists a k-1 form η on U such that $\omega = d\eta$

Proposition 124 Every exact differential k-form ω on $U \subset \mathbb{R}^n$ is closed

12 Vector Fields, differentials forms and the classical operations

Definition 125 Vector Fields A vector field on $U \subset \mathbb{R}^n$ is a map

$$v: U \to U \times \mathbb{R}^n$$
, $v(x) = (x, F(x))$

that assigns to each $x \in U$ a vector $F(x) \in \mathbb{R}^n$ "at x" (here $F : U \to \mathbb{R}^n$ is some map). A vector field v is C^m on U when $v = (id, F) : U \to U \times \mathbb{R}^n$ (or equivalently $F : U \to \mathbb{R}^n$) is C^m

Definition 126 A vector field on \mathbb{R}^n is a map $X : \mathbb{R}^n \to T\mathbb{R}^n$, where $T\mathbb{R}^n$ is the tangent bundle of \mathbb{R}^n ($U \subset \mathbb{R}^n \times \mathbb{R}^n$), such that $\pi \circ X = id_{\mathbb{R}^n}$. In other words, X is of the form X(p) = (p, v(p)). The vector field is C^m if the function v is C^m . **Proposition 127** If v is a (C^m-smooth) vector field, then $w = \langle v, \cdot \rangle$ is a (C^m-smooth) one-form

Definition 128 Let $f : U \subset \mathbb{R}^n \to \mathbb{R}$ be a differentiable function on U. The vector field v on U such that

 $\langle v, \cdot \rangle = df$

is called the gradient vector field of f and is denoted by grad f

Definition 129 Let $v : U \subset \mathbb{R}^n \to U \times \mathbb{R}^n$ be a differentiable vector field on U. The divergence of v is the function $\operatorname{div}(v) : U \to \mathbb{R}$ defined by

$$\operatorname{div}(v)(x) = \operatorname{trace} DF|_x$$

where v = (x, F(x)) and DF is expressed in Euclidean coordinates. Note that writing

$$F = (f_1(x^1, ..., x^n), ..., f_n(x^1, ..., x^n))$$

we have $\operatorname{div}(v) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x^i}$

Definition 130 Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be a C^2 function. The Laplacian $\Delta f: U \to \mathbb{R}$ is a function on U given by

 $\Delta f = \operatorname{div}(\operatorname{grad} f)$

In Euclidean coordinates, $\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f_i}{\partial x^{i2}}$

Definition 131 (Hodge star) Given a differential k-form $\omega \in \Omega^k(U)$, $U \subset \mathbb{R}^n$, its Hodge star is the (n-k)-form $\star \omega \in \Omega^{n-k}(U)$ defined by extending the assignment

 $\star dx^{i_1} \wedge \dots \wedge dx^{i_k} = (-1)^{\sigma} dx^{j_1} \wedge \dots \wedge dx^{j_{n-k}}$

where $i_1 < \cdots < i_k, j_1 < \cdots < j_{n-k}$ and $\sigma(i_1, \dots, i_k, j_1, \dots, j_{n-k})$ is the permutation of $\{1, \dots, n\}$ by sky-linearity.

Remark: Note that for a k-form ω on $U \subset \mathbb{R}^n$, $\star \star \omega = (-1)^{k(n-k)} \omega$

Proposition 132 Let v be a differentiable vector field on $U \subset \mathbb{R}^n$. Then the divergence of v satisfies

 $\operatorname{div}(v) = \star(d \star \omega), \quad where \ \omega = \langle v, \cdot \rangle$

Proposition 133 Let $f: U \subset \mathbb{R}^n$ be a C^2 function. Then

$$\Delta f = \operatorname{div}(\operatorname{grad} f) = \star d \star f$$

Definition 134 (Rotational) Let v be a differentiable vector field on $U \subset \mathbb{R}^n$. The rotational of v is the (n-2)-form rot(v) defined by

$$\operatorname{rot}(v) = \star(d\omega), \quad where \ \omega = \langle v, \cdot \rangle$$

If n = 3, then rot(v) is a (3 - 2 = 1)-form, and hence there is a vector field, called the curl of v and denoted by curl(v) such that

$$\langle \operatorname{curl}(v), \cdot \rangle = \operatorname{rot}(v) = \star(d\omega)$$

Proposition 135 Consider \mathbb{R}^3 with Euclidean coordinates x, y, z and let $v = (id, F) : U \subset \mathbb{R}^3 \to U \times \mathbb{R}^3$, where $F = (f_1, f_2, f_3)$, be a differentiable vector field on U. Then

$$\operatorname{curl}(v) = \nabla \times F = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}, \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)$$

Remark: Let $\alpha_1 = \langle v_1, \cdot \rangle$ and $\alpha_2 = \langle v_2, \cdot \rangle$ be linear functions on \mathbb{R}^3 with standard inner product then $\langle v_1 \times v_2, \cdot \rangle = \star (\alpha_1 \wedge \alpha_2)$

Proposition 136 Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be a C^2 function and $v: U \to U \times \mathbb{R}^n$ be a C^2 vector field. Then

- $rot(\operatorname{grad} f) = 0$
- $\operatorname{curl}(\operatorname{grad} f) = 0 \ (n = 3)$
- $\operatorname{div}(\operatorname{curl} v) = 0 \ (n = 3)$

13 Integration of differential forms

Definition 137 A subset $M_k \subset \mathbb{R}^n$ is a regular C^{∞} -smooth k-dimensional surface in \mathbb{R}^n if for every point $x \in M_k$ there exists an open neighbourhood $x \in U$ in \mathbb{R}^n such that

$$M_k \cap U = \{(z, y) \in U \mid y = F(z)\}$$

in a graph of a smooth map $F: V \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$, where $z = (x^{i_1}, ..., x^{i_k})$, $y = (x^{j_1}, ..., x^{j_{n-k}})$ with $i_1...i_k, j_1...j_{n-k}$ all distinct

Definition 138 A regular level set $M_c = \{f = c\}$ of a smooth function $f : \mathbb{R}^n \to \mathbb{R}$, *i.e.*, such that grad $f(x) \neq 0$ for every $x \in M_c$, is a regular C^{∞} -smooth (n-1)-dimensional surface in \mathbb{R}^n , whenever M_c is non-empty. More generally,

$$M_{c_1,...,c_{n-k}} = \{x \in \mathbb{R}^n | F(x) = (c_1,...,c_{n-k})\} \neq \emptyset$$

of a C^{∞} -smooth map $F : \mathbb{R}^n \to \mathbb{R}^{n-k}$, i.e., such that rank $DF|_x = n-k \ \forall x \in M_{c_1,\dots,c_{n-k}}$, is a regular C^{∞} -smooth k-dim surface in \mathbb{R}^n .

Definition 139 Let M^k be a regular C^{∞} -smooth surface in \mathbb{R}^n . A differential k-form on M^k is a field of alternating k-linear functions

$$\omega|_x: T_x M^k \times \cdots \times T_x M^k \to \mathbb{R}$$

where $T_x M^k = \{ v \in \mathbb{R}^n | v = \dot{\gamma}(0), \text{ with } \gamma \text{ a } C^1 \text{ differential curve in } M^k \subset \mathbb{R}^n \text{ with } \gamma(0) = x \}$ is the tangent space of M^k at x

Definition 140 A smooth regular k-dim. surface M_k is called orientable if it admits a smooth nowhere vanishing top (=of degree k) form

Theorem 141 A compact regular C^{∞} smooth k-surface M^k in \mathbb{R}^n is a finite union of $F_i(D_i)$ where

$$F_i: \mathbb{R}^k \to M^k \subset \mathbb{R}^n, \quad F_i \in C^\infty(\mathbb{R}^k)$$

is such that F_i is a C^{∞} diffeomorphism onto its image in M^k , $D_i \subset \mathbb{R}^n$ is a k-dim compact convex polyhedron and $F_i(int D_i) \cup F_j(int D_j) =, i \neq j$

Definition 142 Any C^1 differentiable map $F : D \subset \mathbb{R}^k \to \mathbb{R}^n$ where D is a compact convex k-dim. polyhedron in \mathbb{R}^k , together with an orientation \pm on D, is called k-dimensional cell. If $\sigma = (F, \pm D)$ is a k-dim cell and ω is a k-form on \mathbb{R}^n , then

$$\int_{\sigma} \omega = \int_{D} F^{\star} \omega = \pm \int_{D} g(x) dx^{1} \dots dx^{k}$$

where $F^{\star}\omega = g(x)dx^1...dx^k$

Definition 143 A k-chain in \mathbb{R}^n (or a regular smooth surface $M^e \subset \mathbb{R}^n$) is a finite formal sum of the form

$$c_k = \sum_{i=1}^n m_i \sigma_i$$

where $m_i \in \mathbb{Z}$ and $\sigma_i = (F_i, \pm D_i)$ is a k-cell, take up to the natural equivalence relation:

$$m_1\sigma + m_2\sigma = (m_1 + m_2)\sigma, \quad -\sigma = (F, -D)$$

The set of chains because an abelian group under the formal sum operation and we define the integral of a differential k-form ω over a k-chain C_k as

$$\int_{C_k} \omega = \sum_{i=1}^n m_i \int_{\sigma_i} \omega$$

where $C_k = \sum_{i=1}^n m_i \sigma_i$

Proposition 144 Let D_1 and D_2 be two compact convex polyhedral in \mathbb{R}^k and let

 $F: U \to V, \quad D_1 \subset U \subset \mathbb{R}^k, \, D_2 \subset V \subset \mathbb{R}^k$

be a C^1 smooth diffeomorphism sending D_1 onto D_2 and preserving the orientation on \mathbb{R}^k . Then for any (C^0) k-form ω on D_2

$$\int_{D_1} F^* \omega = \int_{D_2} \omega$$

Corollary 145 Let $\sigma = (f, D)$ be a k-cell and ω a differential k-form in \mathbb{R}^n . If $F : \mathbb{R}^k \to \mathbb{R}^k$ is a C^1 diffeomorphism, then

$$\int_{F^{-1}(\sigma)} F^* \omega = \int_{\sigma} \omega$$

where $F^{-1}(\sigma) = (f \circ F, F^{-1}(D))$. Similarly, if $C_k = \sum_{i=1}^n m_i \sigma_i$ is a k-chain, then

$$\int_{F^{-1}(C_k)} F^* \omega = \int_{C_k} \omega$$

where $F^{-1}(C_k) = \sum_{i=1}^k m_i F^{-1}(\sigma_i)$

13.1 Stokes's theorem

Definition 146 Let $\sigma(F, D)$, $F: D \subset \mathbb{R}^k \to \mathbb{R}^n$ be a k-cell. The boundary $\partial \sigma$ is defined by

$$\partial \sigma = \sum_{i} \sigma_i^{k-1}, \quad \sigma_i^{k-1} = (F|_{D_i}, D_i)$$

where D_i are the faces of D oriented by the outward normal \vec{n} . The boundary ∂C_k of a k-chain is defined by

$$\partial C_k = \sum_{j=1}^n m_j \partial \sigma_j$$

Proposition 147 For a k-chain C_k , $\partial \partial C_k = 0$

Theorem 148 (Stokes's theorem) Let ω be a C^1 -smooth differential (k-1)-form on \mathbb{R}^n (or on a compact regular orientable C^{∞} -smooth surface M in \mathbb{R}^n). Then for every k-chain C_k in \mathbb{R}^n (contained in M)

$$\int_{C_k} d\omega = \int_{\partial C_k} \omega$$

Corollary 149 Let M be a compact regular orientable C^{∞} -smooth k-surface in \mathbb{R}^n with boundary ∂M . Then for every C^1 -differentiable (k-1)-form ω on M,

$$\int_M d\omega = \int_{\partial M} g^*(\omega)$$

where $g: \partial M \to M$ denotes the inclusion map.

Definition 150 A subset $M^k \subset \mathbb{R}^n$ is a regular C^{∞} -smooth k-dimensional surface with boundary if for every point $x \in M^k$ there exists an open neighbourhood U of x in \mathbb{R}^n such that

$$M^k \cap U = \{(z, y) \in U | y = F(z)\}$$

is a graph of a smooth map $F: W \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$, where $z = (x^{i_1}, ..., x^{i_k})$, $y = (x^{j_1}, ..., x^{j_{n-k}})$ with $i_1, ..., i_k, j_1, ..., j_{n-k}$ all distinct and W is either

- an open ball $B_r(z_0)$ or
- a part of $B_r(z_0)$ cut out by a C^{∞} function $f: W = B_r(z_0) \cap \{f \leq 1\}$

assuming $\{f = 1\}$ is a regular level set for f on \mathbb{R}^k

Corollary 151 (Green's theorem) Let $U \subset \mathbb{R}^2$ be an open bounded subset in \mathbb{R}^2 with ∂U a closed regular C^{∞} -smooth curve. If ω is a C^1 -smooth 1-form on (a neighbourhood of) \overline{U} , then

$$\int_{M=\overline{U}} d\omega = \int_{C=\partial\overline{U}} \omega$$

which in coordinates (x, y) on \mathbb{R}^2 reads as

$$\int_M \left(\frac{\partial b}{\partial x} - \frac{\partial a}{\partial y}\right) dx \wedge dy = \int_C a(x, y) dx + b(x, y) dy$$

where $\omega = a(x, y)dx + b(x, y)dy$

Corollary 152 (Divergence Theorem) Let $U \subset \in \mathbb{R}^3$ be an open bounded subset in \mathbb{R}^3 with ∂U a closed regular C^{∞} -smooth 2-surface. Let v be a C^1 vector field on (a neighbourhood of) \overline{U} . Then

$$\int_{M=\overline{U}} \operatorname{div}(v) = \int_{S=\partial\overline{U}} i_v(\omega)$$

where $\omega = dx \wedge dy \wedge dz$ is the standard volume form on \mathbb{R}^3 . In coordinates, if v has components $v^1 = v^1(x, y, z), v^2 = v^2(x, y, z), v^3 = v^3(x, y, z)$, the r.h.s

$$\int_{S=\partial \overline{U}} i_v(\omega) = \underbrace{\int_{S=\partial \overline{U}} v^1 dy \wedge dz + v^2 dz \wedge dx + v^3 dx \wedge dy}_{\int_S v \cdot d\vec{n} \ \textit{flux through } S}$$

Corollary 153 (Curl theorem) Let $M^2 \subset \mathbb{R}^3$ be a compact regular oriented C^{∞} -smooth two-surface in \mathbb{R}^3 with boundary ∂M^2 . Let v be a C^1 one-form in \mathbb{R}^3 . Then

$$\int_{M^2} \operatorname{curl}(v) \cdot d\vec{n} = \int_{M^2} \star \operatorname{rot}(v) = \int_{\partial M^2} \omega$$

where $\omega = \langle v, \cdot \rangle$, with $\langle \cdot, \cdot \rangle$ the standard inner product on \mathbb{R}^3

Corollary 154 (Gradient Theorem) Let $\sigma = (\gamma, [a, b]), \gamma : [a, b] \to \mathbb{R}^n$ be a 1-cell in \mathbb{R}^n and let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^1 -function. Then

$$\int_{\sigma} df = f(\sigma(b)) - f(\sigma(a))$$

Theorem 155 (Brouwer's fixed point theorem) Let $\overline{B_r(0)} \subset \mathbb{R}^n$ be a closed ball in \mathbb{R}^n around the origin and $f : \overline{B}_r(0) \to \overline{B}_r(0)$ be a C^2 -smooth map. Then exists at least one fixed point $x_0 \in \overline{B_r(0)}$:

$$f(x_0) = x_0$$