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1 Introduction

This notes are based on the material of the Lecture’s notes and the course textbook.

2 Derivatives

Definition 1 Let f: U — R™ be given where U is an open subset of R™. The function f is
differentiable at p € U with derivative (Df), =T if T : R* — R™ is a linear trasformation
and

. R
Fo-+v) = Fp) + T() + B) = lim 70— g

[0 [|v]]
We say that the Taylor remainder R is subliear because it tends to 0 faster than ||v||.

Remark: Df is the total derivative or Frechet derivative and if the function is differen-
tiable at U then the map z +— (Df), defines a function
Df :U — L(R",R™)

where L(R™ R™) is the set of linear transformations 7' : R" — R™

Theorem 2 If f is differentiable at p then it unambiguosly determines (Df), according to
the limit fomrula, valid for all u € R™,

Definition 3 If f is differentiable at p, then for all basis vector e; € R™ (orthonormal),

Ofi| _ pyy file+tei) — filp)
Ox;j p 10 t

are the ij*" partial derivative of f at p if the limit exists.

Definition 4 (Jacobian Matrix) If f is differentiable (in coordinates:
f=filx1, e xn)y ooy frn(T1, oy y)), then

oh .. 9f
oz OTn
(Df)p = .
Ofm .. Ofm
o1 OTn

where the rows of Df|, are the transpose of the gradient of f; at p for all i € {1,...,m}

(V' fi(p) )
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Corollary 5 If the total derivative exists then the partial derivatives exist and they are the
entries of the matriz that represents the total derivative

Remark: Do not confuse the total derivative D f|, with the direction derivatives of f at
p € U which is the limit, if exists

V,f(u) = (Df)p(u) = lim

If the 4, j-th partial derivatives of f at p exist for all i € {1,...,m}, then together they form
the directional derivative of f in this specific e; direction.

Remark: If f is differentiable, then

_ _of of
Vpf(u) =V£p) u_8x1u1+ +8xnu"
Proposition 6 Let R™ and two norm || - ||a, || - |5, then

Jry,re >0 st Yoo r||v]le < ||vlla < T2llv]ls
Theorem 7 Differemtiability implies continuity

Theorem 8 If the partial derivatives of f : U — R™ exist and are continuous then f is
differentiable.

Theorem 9 Let f and g be differentiable. Then
(a) D(f +cg)=Df +cDg
(b) D(constant) =0 and D(T(z)) =T where T is a linear map.
(¢) D(go f) = DgoDf Chain Rule
(d) D(fg) = Dfg+ fDg Leibniz Rule

Theorem 10 A function f : U — R™ is differentiable at p € U if and only if each of its
components f; is differentiable at p. Furthermore, the derivative of its i component is the
ith component of the derivative

Theorem 11 (Mean Value Theorem) If f : U C R" — R™ is differentiable on U and
the segment [p, q] is contained in U then

1/(a) = F()I| < Mllg = p|
where M = sup{||(Df):|| : z € (p,q) C U}.
Theorem 12 ( C! Mean Value theorem) If f : U — R™ is of class C* (its derivative

exists and is continuous) and if the segment [p,q] C U then

1
@) — 1) = /0 (Df)psita—p dt(a — p)

where the integral is the average derivative of f on the segment. Note that conversely it holds
too.

Corollary 13 Assume that U is connected and open. If f : U — R™ is differentiable and for
each point x € U we have (Df), =0 then f constant.
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3 Higher Derivatives

The derivative D* f Vk € N is the same sort of thing that f, namely a function from a open
subset of a vector space into another vector space.

Definition 14 Assume f : U C R — R™ is differentiable in U, then f is second differen-
tiable at g € U if Df : U — L(R™, R™) is differentiable at ¢ € U

Remark: The second derivative at p is a linear map from R"™ into £. For each v € R",
(D2 f),p(v) belongs to £ and therefore is a linear transformation R” — R™ so (D?f),(v)(w)
is bilinear and we write it as (D% f),(v,w). The higher derivatives are defined in the same way.

Remark: If f second-differentiable on U then z + (D?f), defines a map
Df .U — £? = L(R", L(R",R™)) = L(R™ x R",R™)

where £? is the vector space of bilinear maps R" x R” — R™

Remark: Let
Il =sup { LI <o e )

then
[Df)[ < IDfI[lv]
1D f ()|l < 1D fl]lv]]?
ID* f ()|l < | D*fllllv]* k e N
(D?

Theorem 15 If (D*f), exists then fr)p exists, the second partials at p exist, and

& fr(p)
8@8@

(D? fr)p(eire5) =

Conversely, existence of the second partials implies existence of (D?f),, provided that the
second partials exist at all points x € U near p and are continuous at p

Theorem 16 If (D*f), exists then it is symmetric: for all v,w € R™ we have
(D2 f)p(v,w) = (D?f)p(w, )

Corollary 17 Corresponding mized second partials of a second-differentiable function are
equal,

0> fr(p) _ 0*fx(p)

Oxiﬁa:j N 8%‘]6%1

Corollary 18 If f is differentiable on U, %@J;j extst on U and are continuous at p, then

ank ank o
Ox;0z;  Ox;0x; Vi, gk

Corollary 19 The " derivative, if it exists, is symmetric: Permutation of the vectors
U1, ..., vy does not effect the value of (D" f)p(vi,...,vr). Corresponding mized higher-order
partials are equal.
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3.1 Smoothness class

Definition 20 f: U C R” — R™ is of class C* on U if f,Df, D*f,...,DFf exist on U and
DEf is continuous on U

Definition 21 f:U Cc R* — R™ is of class C® if f € C* Vk € N

Corollary 22 f € C* (or C®) iff all partial derivatives up to order k (or for all partial
derivatives) exist and are continuous.

Consider the set C*(U,R™) of C* maps on U, for which the following norm is bounded
|fllcr = max sup D" |
Theorem 23 (CH(U,R™), || - ||cx) is a Banach space for all k < co. A sequence of functions
fn € CK(U,R™) converges to f € CK(U,R™) in || - ||cn iff
o=t foooe DV fo = DVS
on U (uniform converges of f and its differentials up to order k )

Corollary 24 (C* — M test) Let f, € C¥(U,R™) be such that || fu|lcx < an, where >0 a
converges. Then Y o> | fn converges to a function f € Ck(U,R™). Moreover, for all s < k:

DQf = iD2fn
n=1

term by term differentiable is valid for all s < k.

4 Taylor’s theorem

Theorem 25 (Taylor’s theorem) Let f : U C R® — R™ be of class CV on U. Let
[p,p+v] CU. then

N—
flp+v) = kz D¥flp( vy ) + Ry-1(f,0)

ktimes

??“,_.

where

() = /0 mmﬂpm(v )t

Remark: When N = 1, we get the C' mean value theorem
Corollary 26 Under the assumptions of the theorem,
fo+v) = fp) + Z k,D FlpC 2w ) + o[l ™)

k;tzmes
where o([[v]|") = f(v) < f(v)/[[v]" = 0 as [[v|" =0

Remark: Let x = v + p so that v; = (x — p);. In two dimension with z; = x and x93 =y
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5 Flat vs Analytic functions

In the previous section we have discuss the Taylor expansion and we learn that given f : U C
R™ — R™ (for simplicity m = 1) the Taylor’s theorem holds up to any order. In general,
the series doesn’t have to converge. Moreover, if the series does converge, it doesn’t have to
converge to a given function.

Definition 27 When a function f have Yk € N DFf|g = 0 and is smooth, then such f is
called flat.

Definition 28 A function f: U C R™ — R is (real) analytic if Vpo = (25...20) € U

n
o0 [o.¢]
f= Z . Z Ckl,"',kn(xl — 3:(1))]“1 .. (xn — x%)kn

k1=0 kn=0

convergent power series in a neighbourhood of py. Alternatively, a function f is (real) analytic
on U if f € C°° on U and the Taylor series

1 oFf 0 0

(2
ye

converges to f in a neighbourhood of py = (a:(l)xg) for all po € U (note that the series are

local).
5.1 Relation with complex analysis

Definition 29 f : U c C* — C is holomorphic if f is R differentiable on U C C" = R?"

and g—zij =0 forall j =1,...,n where

9
aZj

0 1/ 0 i 0
B (. SR R
85 2 8$j 8yj
zj = xj + 1yj. This implies that D f|, is complex linear at every p € U.

Theorem 30 f is holomorphic on U iff near every point it can be represented by a convergent
power series

Corollary 31 Holomorphic functions F : C" — C restricted to R™ are real-analytic (Ref(Rez...Rezy,)
is real analytic ). Conversely, a real analytic function h : R™ — R admits (at least locally) a
holomorphic extension

6 Find extrema of a function

Definition 32 Let f: U C R™ — R be a function. It is said to have a local minimum (resp.,
mazimum) at po € U if 3 a small neighborhood po € V-.C U such that

f(p) = f(po), resp.f(p) < f(po)
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for allp € V. pg is a strict local minimum (resp. mazimum) if

f(p) > f(po), resp-f(p) < f(po)
for allp € V\{po}.

Definition 33 Local minima and maxima are called extrema of a function

Proposition 34 Consider a function f: U C R® — R. Assume that g—xfl, e ,687]; erist at a
point pg € U. If py is a local extremum of f, then
0
/ =0,i=1,...,n
O; Po

Remark: Points where
_ | of of
vi=[# - ]
vanishes are called critical points. They don’t have to be minima or maxima

Theorem 35 Let f: U C R® = R be of class C? in a neighbourhood of py € U which is a
critical point of f (V flp, =0). If the Hessian
0% f
&maxj

€ Mat(n x n,R)

Po

is positive (resp., negative) definite, i.e. the eigenvalues are positive (resp. negative) then
po is a local minimum (resp., mazimum). If the eigenvalues are both positive and negative,
then we have a saddle point. Instead, if the eigenvalues are 0 then we do not have enough
information to tell.

Remark: To check positive/negative definiteness, one can use Sylvester’s criterion from
Linear algebra

7 Implicit function theorem

Definition 36 Two open subsets Vi and Vo of R™ are called CF (resp.,C> )-diffeomorphic if
there exists a bijection f : Vi — vy such that f and f~' are of class C* (resp.,C>).

Remark: If f is a bijection and f and f~! are C°, then f is called a homeomorphism

Theorem 37 (Implicit Function Theorem) Let U be an open subset of R™ x R™ and
F = (f1,.e; fm) : U = R™ be of class CK(C®), k > 1, on U. Consider the following equation

F(l‘, y) = 20
where zy € R™. If there exists (xo,y0) € U with F(xg,y0) = z0 and the m x m matriz

_Ofi
;| (z0.,50)

B

is invertible, then the equation admits a unique solution y = g(x) near (xo,yo). Furthermore,
g is Ck(O>)
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Theorem 38 (Implicit Function Theorem 2) If the mapping F : U — R" defined in a
neighborhood U of the point (xo,yo) € R™T™ is such that

e« FcCP(UR"), p>1
o F(xo,y0) =0
o F)(x0,y0) is an invertible matriz

then there exists am (m +n) dimensional interval I = I* x I} C U, where
I'={z eR"|lz — x| <o} Ij={yeR"|ly—wl|<p}

and a mapping f € C(p)(I;”, I;L) such that

for any point (z,y) € I7* x I,/ and

Theorem 39 Ifh: U C R® — R" is CK(C™®), k > 1 and Dh|y, is invertible, then h is a
Ck-diffeomorphism near xo: there exists a small open neighbourhood xo € Uy C U such that
h:Up — Uy = h(Uy) is a C*-diffeomorphism. In particular, Uy is open and hly, is an open
map (for any V an open subset pf Uy, the image h(V') is open)

8 Banach Fixed point Theorem

Definition 40 (Lipschitz) A function f is Lipschitz in U w.r.t the variables x = (x1, ..., 2p)
and Lipschitz constant L if

1/ () = )l < Lllz -y

forallx,y e U.
Similarly, f is said to be locally Lipschitz in U w.r.t. x = (1, ..., xy) if for every point xg € U
there exists a neighbourhood xog € V. C U such that

1f () = fF@)Il < LY ||l — yll

on V. In other words, f is Lipschitz on V

Theorem 41 (Banach Fixed-point Theorem) Let (M,d) be a complete metric space.
Let f: M — M be such that

d(f(q), f(p)) < Kd(q,p)

for all q,p € M, where k < 1 is a constant not depending on q and p € M. Then f has a
unique fixed point po € M, i.e.

f(po) =po f(p)=p=p=no
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9 Ordinary Differential equations

Definition 42 Lett € R and F : U C R — R be a function of n + 1 variables. An
ordinary differential equation (ODE) of n — th order is an equation of the form

F(t,z, o' 2", ...,x(")) =0

where t is the independent variable, x = x(t) is a function of t and x’, 27, - - 2™ are its
derivatives.

A function x = x(t) is a solution of the ODE if the substitution of z(t), 2’ (t), ..., z(™(t) into
F makes the ODE hold identically

Remark: The above equation is implicit and therefore the ODE is said to be in implicit
form. An n-th order ODE is siad to be in explicit form if it can be written as follows

2™ = ft,z, 2., x("*l))

Definition 43 Lett € R and f; : U C R**! - R , i =1, ...n, be functions of n+ 1 variables.
A first order system of differentiable equations (in explicit form) is a set of n equations

) = fi(t,x1, . 2p)

xl, = fu(t,x1, ...y xp)

Or, in more compact notation,
' =F(t,z), F:UcCR" R
A solution of this ODE is a vector function
z=u(t) = (21(t) - za(t))
that is differentiable on some interval t € (a,b) C R and if substitution of x = x(t) into the
x' = F(t,x) makes the equality hold trivially.

Definition 44 (Initial value problem) Initial value problem (IVP) asks for solution of
x' = F(t, ) that passes through a given point (tg, o) € U C R" ! e x(tg) = zo € R™. The
solution of the IVP is equivalent to the integral equation

x(t) = zp + /tt F(t,z(t))dt

More precisely, assume F € C° and let x = z(t) be a solution, then

t

x(t) = z(to) + /t o (t)dt = 2o + / F(t,z(t))dt

to to

Conversely, if x = xz(t) is a continuous solution of

2(t) = o —i—/tF(t,x(t))dt

to

Then, z = x(t) € O, z(ty = xo and z'(t) = F(t,z(t)).
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9.1 Linear ODEs

Definition 45 A system of Linear ODFEs is an explicit system of ODEs of the following form
¥ = A(t)z + B(t)

where A is a time dependent n x n matriz and B(t) € R™ is a time dependent vector

Definition 46 A linear system is called homogeneous if B(t) = 0, and otherwise it is called
imhomogeneous

Definition 47 A linear system is said to have constant coefficients if A(t) = A(to) and
B(t) = B(ty), i.e. they do not depend on t

Theorem 48 Consider a linear system

where A = A(t) : (a,b) C R — Mat(n x n,R) is continuous. Then the set of solutions is a
vector space isomorphic to R™.

Theorem 49 Consider a linear system ' = A(t)x + B(t), where A = A(t) : (a,¢) C R —
Mat(nxn,R) and B = B(t) : (a,c) C R — R are C°. Assume 2" = x™"(t) is a solution of
the inhomogeneous system and x = x(t) is an arbitrary solution of the homogeneous sytem
x' = A(t)z. Then, x = z"(t) + 2 (t) is a solution of ' = A(t)x + B(t)

Remark: The difference between two solutions of the inhomogeneous system is a solution
of the homogeneous one.

Proposition 50 Consider an IVP
¥ =Ar x(0)=z9€R"
where A has constant coefficients. Then it can be exactly solved and the solution has the form

z(t) = ey

A

where et is the exponential of an n x n matriz At, defined by series

=1
exp{At} = Z gAktk
k=0

Remark: To solve a particular ODE, it is helpful to use the Jordan decomposition of A.
For more info look in the lecture notes of Linear system

Theorem 51 (Existence and uniqueness) Let F' = F(t,z) : U C R x R" — R" be con-
tinuous on U and locally Lipschitz on U w.r.t x = (x1,....,xy). If (to,x9) € U, then the

1vpP
{w’ = F(t,x)
x(to) = X0

has a unique solution, which can be extended to the boundary of U
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Theorem 52 Let F' : (d,c) x R" — R" be continuous. Take a segment [a,b] C [d,c] and
assume that F' is globally Lipschitz on [a,b] x R™ w.r.t x € R™. Then the IVP

{m’ = F(t,x)

z(a) = xo
has a unique solution defined on |a,b].

Corollary 53 Consider a linear system of 1 — st order ODEs ' = A(t)x + B(t), where
A: (d,c) = Mat(n x n,R) and B : (d,c) — R"™ are continuous. Then the IVP, xz(ty) = xo
where ty € (d,c) has a unique solution on (d,c) for all initial conditions xg € R"

Theorem 54 (Peano existence theorem) If F': U C R x R" — R" is continuous on U,
then every IVP

{x’ = F(t,x)
w(to) = X0

where (to, o) € U has a (possibly non-unique) solution.

Theorem 55 (Separations of variables for 1-d ODEs) Consider an ordinary differen-
tial equation of the form

' = g(x)f(t)
where g : U C R — R is CY and non-zero on U and f : V C R — R is C°. Then every initial
value problem

z(to) = 2o

{x’ = g() f(t)

where (to, xo) € U X V. has a unique local solution, which can moreover be obtained by solving
T dr /t
— = f(t)dt
/m() g(l') to

Definition 56 Any set of n linearly independent solutions x1(t), ..., xn(t) is called a funda-
mental system of solutions; the matriz X (t), where X (t) = (x1(t),...,xn(t)), is also called a
fundamental system or a fundamental matriz.

for x as a function of t

Remark: Any solution z(t) of ' = A(t)z cen be written as

C1

Cn

where ¢; are constant for all i € {1,...,n}.

Remark: Every fundamental matrix X = X (¢) solves the matrix equation

X' =At)X
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and that it can be written as

Xty =XE@)-C

where C is a constant and non-degenerate n x n matrix and X (t) is the unique solution of
matrix IVP

(XEY = AXE, XEty)=F

where F is the identity matrix.

Definition 57 Let Y = Y (t) be a solution to the matriz equation X' = A(t)X. The (time-
dependent) determinant of Y (t) is called the Wronskian determinant or Wronskian of Y (t).

Theorem 58 Let A = A(t) be continuous and let X = X(t) be a solution of the matriz
equation X' = A(t)X. Then X (t) is a fundamental matriz iff the Wronskian w(t) of X (t) is
non-zero. Moreover, w(t) satisfies the differential equation

w' = (trA(t))w

where trA(t) is the trace of A(t). Hence,
o w(t) = w(ty) exp { Ji tr(A(s))ds}

o det(XE(t)) = exp { Ji tr(A(s))ds}

where X (t) solves X' = A(t)X, X (tg) = E.
In particular, w(t) is either identically 0 or it is non-zero for every t

9.2 Variation of constant

Consider an inhomogeneous system
¥ = A(t)z + B(t)
where
A:(c,d) = Mat(n x n,R)
B:(c,d) - R"

are continuous. Let X (¢) be the fundamental matrix for the homogeneous equation 2’ =
A(t)z. In the variation of constant method, the constants in

which is the general solution to ' = A(t)z, are varied.
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Definition 59 Given the above inhomogeneous system and fundamental matriz, then

c(t) = c(to) + tX_l(s)B(s)ds

to

and the general solution of the inhomogeneous equation has thus the form

X(t) <c(to) + tX_l(s)B(s)ds>

to

Moreover, to solve the IVP (with x(ty) = xo) one takes X (t) to be such that X(ty) = E and
sets cop = xq.

9.3 Vector fields and their flows

Consider a system of 1 — st order ODEs 2’/ = F(z). Where F = (f; ... f,) : U C R* — R"
is of class C*. The map F is also called a C* vector field since it assigns to each point
x(z1...xy) a vector F(x) € R™.

Another represenation of a vector field is that of a map
V:U—-UxR" V(z)=(x,F(z))

which assigns to every point x € U a vector F(x) € R™ attached to z.

Remark: Geometrically a solution of the ODE 2’ = F(z) is a curve x = xz(t) that is
tangent to the vector field at every point and, moreover, the magnitude and direction of 2/ (t)
are equal to that of F(x(t)).

Remark: ODEs are sometimes written as 2’ = V(x), where V is a vector field (or 2’ = V (¢, x)
in time-dependent case).

Definition 60 When F = F(x) (V = V(x)) is independent of t, the ODE x' = F(z) is
called autonomous

Definition 61 The flow of a (at least Lipschitz) vector field is a (locally defined) map
g'(x): (—e,¢) xU — R™
as follows: g'(x) is the unique (mazximal) solution of ' = F(x) with ¢°(z) = x.

Proposition 62 For an autonomous ODE ' = F(z) andt,s € R, |t| <e, |s| <, |[t+s]| <,
one has

9" (2) = ¢'(g°(2)) = ¢°(¢g"(2))

Corollary 63 Assume that solutions of ¥’ = F(x) are defined for all t € R. Then the flow
gt (x) defines a group homomorphism

tER—>gt(-)

rom R into the group of maps from U C R" to itsel
group 14
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Remark: if F € C* then
g'(x): (—e,e) xU = U

is of class at least Ck—1

Theorem 64 Consider a C* vector field V(z) on U C R™. Assume that all solutions of
2’ = V(z) are defined for all times t € R™. Then the flow g* of V

gd(x):RxU—=U
1s C'° smooth. Moreover, for each fixed ty, the map
gto(‘) U = U

is a C*° diffeomorphism.

10 Multiple integrals
Definition 65 Let f: I" =[]\ [a;, bi] — R be a real-valued function. Consider a partition
B-:ai::c6<mi1<---<xf€i:bi

of each segment [a;, b;] and the resulting partition of the box I™ by smaller bozes I

7---7in’
I =[x}, z} ] x - x [z, 2l ]
74'17~--/L'n - 7:1’ il“l’l in’ Zn+1
Then, a Rieman Sum is a sum of the form
k1—1 kn—1
— n
R(f7 P» S) - E e E f(Sil,...,in) |Ii17._,7in}
11=0 in=0
where S;, . i, € Ij, ; are sample points and |17 | is the volume of I ., i.e. the

product o fthe lengths of its sides:

n
in

1 1
|95z‘1+1 - l‘z‘l| XKoeee X |~’C?n+1 -

Definition 66 A function f : I"™ = [[;"[ai,bi] — R is called Rieamann-integrable on I"

with integral
J_/.../f(x>dx1...dx"
In

if Ve > 0 36 > 0 such that for all partitions P of I" consisting of boxes I} ; with diameter
d(Iﬁ,...,in) less than & and any choice of sample points S;, . ., Sii...in € I s for the
corresponding Riemann sum

|J = R(f,P,S)| <e

In other words, f is Riemann integrable when the following limit exists

J:= 1 R(f, P S
. (f,P,S)

where the limit is taken along all marked partitions (P, S) with the diameter d(p) := maz d(I7] ;)
i1,eenyin yeeln
tending to zero.
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Proposition 67 If f : I" — R is Riemann-integrable, then it is bounded.

Definition 68 Consider a function f: 1™ — R and let P be a partition of I"™. Set

Miy,.in = an f(l‘) Mil,...,in = sup f(CC)
el i, el i,
The sums

k1—1 kn—1

r(LP) =) Y maya | T ]
i1=0  ip=0
ki—1  kn—1

R(f,P)=Y > My i |I7 ]
i1=0  in=0

are called, respectively, Lower and Upper Darboux sums of f relative to P

Definition 69 Consider a function f : I — R and let P be a partition of I™. Then, the
quantaties

/ fdzt - da™ == supr(f,P)
P

fdzt---dax™ :=inf R(f, P)
I P

are called, respectively, Lower and Upper integrals of f on I™.

Remark: Note that the sup(inf) is taken with respect to all partitions P of I™
P P

Lemma 70 For all marked partitions (P, S), we have
o r(f,P) < R(f,P,S) < R(f,P)
o (fP)< [ fdr< [, fdx<R(fP)
—

Theorem 71 (Darboux’s criterion of Riemann integrability) A function f:I" — R
is Riemann integrable iff f is bounded and the lower and upper integrals coincide

Infda: :/ fdz

—

Remark: For a bounded function, the lower and upper integrals of f always exist. This
follows from the above lemma ii.

Definition 72 (zero set) A subset Z C R™ is a zero set (or of Lebesgue measure zero) if
Ve > 0 there exists a countable covering of Z by (open or equivalently closed) boxes I3 such

that
Yol <e

J
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Proposition 73 Let Z C R™ be a zero set. Then W C Z is also a zero set and a countable
union of zero sets is again a zero set

Theorem 74 (Riemann-Lebesgue theorem/Lebesgue’s criterion) A function f: 1" —
R is riemann integrable iff it is bounded and continuous almost everywhere on I",i.e., there
exists a zero set Z C I™ such that f is continuous on I"\Z

Definition 75 Let E be a bounded subset of R™ and x g be the indicator function (takes value
lifx € E and 0 otherwise). A function f : E — R is Riemann integrable on E if the function
f - xe(x) is Riemann integrable on some box I"™ containing E. The integral of f over E is

then defined by
/fd:n:: / fxgdzx

E ECI™

Proposition 76 If I} and I} contain E, then [ f-xpdz and [ f-xgdx either both
BECI} ECIy
exist and are equal or both do not exist.

Theorem 77 Let E C R™ be a bounded subset of R™ such that the boundary is a zero set.
Then a function f: E — R is Riemann integrable iff f is continuous almost everywhere (i.e.
f continuous outside a zero set Z C E C R™).

Moreover, if E is bounded and OF is not a zero set, then xg is not Riemann integrable
on E.

Definition 78 A wvolume of E C R™ (if exists) is the Riemann integral

/1-d$1-~-dx"
E

Theorem 79 (Change of variables formula) Let ¢ : U — W be a C'-diffeomorphism
between subsets U and W of R™. Let E be a bounded subset of R™ such that E C W. If f is
Riemann integrable on E, then g := (f o)) - |det(Dv)| is Riemann integrable on ¢~ (E) and

[ (tov)laetp)lds = [fan, y=v)
v~ H(E) E
Theorem 80 (Fubini’s theorem) Assume that By C R¥ and Ey C R™ are bounded and
let f: EyW x B9 — R be Riemann integrable. Then both f f(z,y)dx and fElf(x,y)d:c exists

-
and integral on Ey with respect to y, then

/E2 / f(z,y)dx dyZ/E2 Elf(x,y)dx dy = //f(l‘,y)da:dy

— E E1xFE>5

where x = (z1, ..., 2%) and y = (2P, .., 2FT™).

/faculty of Science and Engineering 15



Multivariable analysis /Zambelli Lorenzo University of Groningen

Corollary 81 Assume that E1 C RF and Ey ¢ R™ are bounded and let f:FE1 X Ey— R be
Riemann integrable. Then

| [ s - /E 2 | |- /E | | iy | do

Eq1x Es —E )

Corollary 82 Under preceding assumption fE1 flx,y)dx exists for almost all y. Similarly,
ng f(x,y)dy exists for almost all x

Corollary 83 If f : If x I3* = R and f is continuous, then the iterated integrals exist and
are equal to each other.

Corollary 84 Assume D C R™! bounded, let 11,19 : D — R and
E={(z,y) eR" I xR|z € DYy(z) <y < o(z)}

and is bounded. If f : E — R is integrable then

/E f (. y)dady = /D / T2f<x,y>dyda:

Corollary 85 (Cavalieri’s principle) Let E C R"! be bounded and let OF be a zero set.
Then

Vol(E):/Ed:cl---dx"_ldy:/ﬂ Vol(E,)dy
Y

where E C 11 x I;, E,, = {(z,y) € Ely = yo} is a y-slice of E and Vol(E,,) is its

(n — 1)—volume; more precisely, any number between [ 1-dx and ny 1-dx
0
=5,

Remark: Note that by corollary, [ -1 XE,dv exists almost everywhere, so Vol(E,) is
well defined almost everywhere and also OF) is a zero set in R for almost all y

Remark: The notion of the volume: Vol(E) = [, 1 dx, as follows from the Riemann
Lebesgue theorem, is well defined precisely for those bounded sets E, for which F is a zero
set. Note also that it is invariant under Euclidean isometries by the change of variables
formula

10.1 Improper Integrals
Definition 86 Let £ = U;; E;, where E; C Ej1 C R", each Ej is bounded and for each
J, OE; is a zero set. Assume that f : E— R is integrable on E; for all j and

J = lim fdz

j—00 E]'

ezists and doesn’t depend on Ej, then J is the improper integral of f on E (the same notation
[ fdx = J is used)
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Proposition 87 If £ = U(;il E;, where E; C Ej11 CR", each Ej is bounded and for each
J, OF; is a zero set, and E is also bounded with OF a zero set, then

o lim;_,o Vol(E;) = Vol(E)

o For every integrable function f : E — R, its restriction to E; is also integrable and

lim fdx—/fdx

]—)OO

Remark: This proposition shows that improper Riemann integrals generalise Riemann
integrals

Proposition 88 If f,g: E — R are both integrable on E; (E; bounded and OE; a zero set),
|f| < g on E and lim;_, ij gdx exists, then

/Egda?, /E|f|dm, /Efd:c

Definition 89 Assume that for all y € [c,d) C R, the following improper integral exists:

/fﬂ:y

where [a,b) C R and b is possibly +oo. It is assumed that on each segment [a,c] C [a,b), a
proper Riemann integral exists.

exist

The improper integral converges uniformly on [e,d) if Ve > 0 there exist a neighbourhood
of the form (by,b) (or (by,+00) where b = +o00) such that Ve in this neighbourhood and

Yy € [e,d) .
/ f(z,y)dx

Theorem 90 Assume that f = f(z,y) and g = g(x,y), defined on [a,b) X [c,d) are integrable
w.r.t x on all [a,e) C [a,b) for ally € [c,d). If |f(z,y)| < g(z,y) and f;g(az,y)dx converges

<€

uniformly on [c,d), then so does the integral f;f(az,y)dy (in particular, it is well defined
Vy € [¢,d))

Theorem 91 If f : [a,b) X [¢,d) is continuous, the integrals

b d
/ f(z,y)de  and / f(,y)dy

converge uniformly w.r.t y on all [c,e) C [c,d) and w.r.t x on all [a,r) C [a,b), respectively,
and there exists at least one iterated integral

/cd/ab\f\dmdy or /ab/cdf\dyd:):
/cd/abfdxdy:/ab/cdfdydx
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Theorem 92 If f = f(z,y) : [a,b) X [¢,d] — R and its partial derivative with respect to y
are continuous, the integral

b
/ fy(z,y)da

converges uniformly on [c,d] and f; f(x,y)dx converges for at least one y in [c,d], then

f; f(z,y)dy converges uniformly and

o b b
8y/ fd:c:/f;d:c

Corollary 93 Let f :[a,b] x [c,d] = R. Assume f € C° and % exists and is C°. Then

b
/ f(z,y)dz € C'(y)

and

o [P b9
= / f,y)da = / 5ol 0)da

11 Alternating k-linear forms
Definition 94 Given a vector space V over a field K, its dual V* is defied as
V* = L(V,K)
the space of linear functions from V' to K
Remark: V™ is itself a vector space over K.

Definition 95 Let V' be finite-dimensional (and hence isomorphic to K", n < o0) and
e1,....,en, €V be a basis of V. The dual bastis of eq, ..., e, is the basis

el et eV*
of V* defined by the rule e'(e;) = 5; Vi,j<n

Remark: 5; is known to be the Kronecker delta and is equal to 1 when j = ¢ and 0
otherwise.

n

Proposition 96 Let ey, ...,e, be a basis of V.. Then the dual basis e, ...,e" is indeed a basis

of V*. Moreover,
Lo=Y" ve=v=>3 1", ¢€)e
2. forany feV*, f=3" f(ei)el

Definition 97 Elements of V* = L(V,K) are called Linear functions or linear 1-forms
or covectors
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Definition 98 Given two vectors spaces Vi and Va over a field K, a function
w: Vi xVy =K
1s called bilinear or a bilinear form if it is linear in each argument, that is, if

w(Av + u, s) = Aw(v, s) + w(u, s)
w(v,As + 1) = w(v,s) + Aw(v,r)

for allv,u € Vi; s,7 € Vo, and A € K. The vector space of all bilinear maps w : V1 x Vo — K
is denoted by L(V1 x Va,K)

Remark: Recall that the space £(V} x V3, K) is isomorphic to the space £L(V1L(V2,K)).

Definition 99 Given vectors spaces Vi, ..., Vi over K, a function w : V3 x --- x Vi = K is
called k-linear or a k-linear form if it is linear in each argument, i.e., if Vi, 1 < i < k and
ij € V} jF#i

W(Ul, oo Ui—1, 7y Vit 1, ...,’Uk;) Vi =K

is linear. The space of k-linear maps is denoted by L(Vx---xVj,,K) = L(V1, L(Va, - L(V};, K) - - -

remark: More generally, one can consider k-linear maps with values in another vector
space, rather than the field K.

Definition 100 Let V be a real vector space. A k-linear map w :V X --- x V — R is called
alternating if for every permutation o of {1,...,k} and every choice of vi,...,ux € V, we
have

W(Vg(1)s "+ 5 Vo(k)) = sign(o)w(vi, ..., vg)

The space of k-linear alternating maps w : V x --- x V. — R is denoted by /\k(V)*.

Theorem 101 The space N*(V)* is a vector space

11.1 Wedge product

Definition 102 Let V' be a real vector space and a, B be two linear functions on V' (i.e.
elements of V* = L(V,R)). The wedge product of o and ( is the map

aNp:VxV =R

defined by

_ got |Mv1)alv2)| _ ~ o) Blw
@ lonva) = det 510 40D — (o)) - afea)a(en)

Proposition 103 The wedge product of a A\ B8 of two linear functions o, € V* = /\1(V)*
is an alternating bilinear form, i.e. an element of /\2(V)*
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Definition 104 Let V' be a real vector space and aq, ...,y be in V* = /\I(V)*. The wedge
product of o, ..., is the map

ar A ANag:Vx- o xV =R

defined by
ar(vy) -+ ox(vg)
ar A A ag(vgy ..., v) = det :
ag(vy) - ag(vg)
where vy, ..., v are arbitrary vectors in 'V
Proposition 105 The wedge product ay A --- A ag of k linear functions oy, -+ ,ap € V* =

AL (V)* is an alternating k linear form,i.e., an element of \¥(V)*

Theorem 106 Let V' be an n-dimensional real vector space and eq,...,e, be a basis of V.
Then wedge products ‘ ‘
PN N 1< << <n

form a basis of N*(V)* for 1 < k < n. In particular, dim(\*(V)* = Cp (binomial coefficient)
for 1 <k <n. Fork>n, /\k(V)* has dimension zero

Definition 107 Let V be an n-dimensional real vector space and ey, ...,e, basis of V.. The
wedge product of w € /\k(V)* and n € /\l(V)* 18 defined by

wAn= E Wit,ooinMjrs € N NN N N e
i< <,
J1<--<J1

where

w= Y Wi g€t A AEE = > et A A
11 <o <ip J1<-<J1

Remark: In other words, one defines the wedge product of basic k-forms et A--- Aelr €
AF(V)* and et A - Aelt € N(V)* as

, , , , k+1
e“/\--'/\el’“/\eﬁ/\‘--/\e”e/\ (V)*
and then extends this definition to arbitrary w € A¥(V)* and n € A/(V)*

Proposition 108 This defied wedge product is consistent with the wedge product of Linear
functions defined above and is independent of the choice of the basis e1,...,e, € V =2 R"”

Definition 109 Let V be a real vector space. The wedge product w A n of two alternating
forms w e N*(V)* and n e N(V)* is defined by

WAN(VL, ooy Uy Vg1 oy Ukpl) = Z sign(o)w(vi, ..., Vi)N(Vkg 1y oy Vitl)

o

where 0 = (i1, ...,ig+; is a permutation of {1,....k + 1} such that iy < --- < i and ixy1 <
c <l
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Corollary 110 Let w € A*(V)*, n.e A'(V)* and ¢ € N™(V)*. Then
s WANANP=wA(nNAQ)
o« WA= (DM Aw)
e The wedge product is linear in each of its arguments, e.g.:
wA (en) =clwAn), forceR
wAN+¢)=wAn+wAe¢, incasel=m
11.2 Pull-Back

Definition 111 Let f : V. — W be a linear map between real vector spaces V and W.
The pull-back of an alternating k-linear form w € /\k(W)* is the alternating k-linear form
frwe NF(V)* defined by the rule

fw(vr, e, vk) = w(f(v1), .oy f(V1))

where vy, ...,V are arbitrary vectors in V

Proposition 112 Let f : V — W be a linear map between real vector spaces and let w €
A" (W)* € N'(W)*. Then

o f*w is an alternating k-linear form on V
o fstar: NN (W)* = NF(V)* is linear
o fStar(wAn) = ffwA f*n

Theorem 113 Let f : U — V and g : V. — W be linear maps. Then (go f)* = fXog*:
AWy = A (U)*

Differential forms

Definition 114 Let U be an open subset on R™. A function
Ww:UXR"%x - xR" >R, w=w(x,v),rzeUveR"
—_————
k factors

is called a differential k form if for all fized x € U, the function w(zx,-) : R" x--- xR™ - R
1s k-linear and alternating.

A differential k-form w is C™-smooth (m < oo) when it is C™ smooth as a function w :
UxR"x---xR"* = R.

Proposition 115 Let w : U x R™ — R be a differential k-form on U. Then there are unique
functions
wil,__ik:U%R, 1 < - <
such that
w= Z Wiy () D2 A - A D'
i1 <<
The k-form w is C™ iff all functions w;,. 4, are C™
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Remark: Differential forms w naturally act on vector fields.

Definition 116 A differential k-form w of class C™ on U C R"™ is an alternating k-linear
over C™(U) map

w: X"MU) x - x X™U) = C™(U)
where X™(U) is the space of all C™-vector fields on U and C™(U) is the space of all C™-

smooth functions on U

Proposition 117 Let U C R™ be open. If w: U x R™ — R is a differential k-form (in the
sense of the first definition) of class C™, then it induces an alternating k-linear over C™(U)
map

O: X"MU) x - x X™U) = C™U)
by setting w(vy, ..., vx)(x) = w(z, Fi(x), ..., Fx(x)) where vi(z) = (x, F;(x)). Conversely, every
such map @ (differential k-form in the sense of the second definition) induces a C™ function

w:UxR"x -+ xR*" =R

such thatVz € U, w(x, ) is k-linear and alternating, by setting w(xg, c1, ..., cx) = ©(v1, ..., v ) (z0),
where the vector fields vi(x) = (x, F(x)) are C™ on U and such that Fi(z) = ¢; in a small
neighbourhood of xy € U (here ¢; € R™ are constant vectors)

11.3 Operations on differential forms

Definition 118 Let w be a differential k-form on Uy C R™ and let f : Uy C R* — Uy C R™
be a C' map. The pull-back of w under f is the differential k-form f*w on Uy defined by

ffw(z, ey .er) = w(f(x), Df|x(c1), ooy Df|a(ck))

meaning that at each x, we have the pull-back of alternating k-linear forms under linear map
df between the corresponding tangent spaces

Proposition 119 Let f : Uy C R® — Uy C R™ be of class (at least) C*. The pull-back f* is
a linear map. Moreover, it respects the wedge product: if w and n are differential k-forms on
Uy, then f*(w A1) = f*w A f*n

Proposition 120 If f : Uy C R® — Uy C R™ and g : Uy — Uz C R® are C' maps, then
(go f)*=f*og"

11.3.1 Exterior derivative

Definition 121 Let w be a differential k-form on U C R"™ of class C™, m > 1. The exterior
derivative D*"'w of w is the differential (k + 1)-form on U defined by

Dty = Z Dwi, i, () ADz"™ A - A Dz
11 <...<ig

where
W= Z Wiy i (@)D" A -+ A Dx'®
11 <...<l

is the unique expansion of w with respect to the basis k-forms Dz A --- A Dz, iy < ... < iy,
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Proposition 122 The following properties of the exterior derivative Dt hold:
o VY differential k-forms w and n of class C* and Y\ € R, we have
D' (\w +n) = AD"*w + D'y
i.e. D s linear
o YV diff. form w and ¥V function f of class C?,

Dt (fw) = Df Aw + fD'w

o YV diff. form w and ¥ map F of class C?, we have

F*(De:vtw) — De:pt(F*w)
o Y diff. form w of class C%, D®**(D'w) =0

Remark: Note that for differential 0-forms of class C', we have D' f = D f. Therefore,
Dt is an extension of the usual notion of the derivative to differential forms. Also note that
unlike in the case of higher order derivatives D" f which might be non-zero for all r € N we
have that D! o D¢ = (), because of skew-symmetry of differential forms.

Note: In what follows, when considering differential forms we will use d to refer to both
exterior derivative and 1-st differentials of functions. When talking about higher derivatives
of maps, D will be used instead.

Definition 123 A C' differential k-form w on U C R" is called closed if dw =0 on U.

A Cl differential k-form w on U C R™ is called exact if there exists a k — 1 form n on
U such that w = dn

Proposition 124 FEvery exact differential k-form w on U C R™ is closed

12 Vector Fields, differentials forms and the classical opera-
tions

Definition 125 Vector Fields A vector field on U C R™ is a map

v:U—=UxR" vx)=(z,F(x))
that assigns to each x € U a vector F(x) € R" 7at x” (here F : U — R" is some map). A
vector field v is C™ on U when v = (id, F) : U — U x R" (or equivalently F' : U — R"™) is
Cm

Definition 126 A wector field on R™ is a map X : R™ — TR", where TR" is the tangent
bundle of R™ (U C R™ x R"™), such that m o X = idgn. In other words, X is of the form
X (p) = (p,v(p)). The vector field is C™ if the function v is C™.
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Proposition 127 Ifv is a (C™-smooth) vector field, then w = (v,-) is a (C™-smooth) one-
form

Definition 128 Let f : U C R® — R be a differentiable function on U. The vector field v
on U such that

<U7 > =df
1s called the gradient vector field of f and is denoted by grad f

Definition 129 Let v : U C R"™ — U x R"™ be a differentiable vector field on U. The
divergence of v is the function div(v) : U — R defined by

div(v)(z) = trace DF |,
where v = (x, F(x)) and DF is expressed in Euclidean coordinates. Note that writing
F = (filzt,....z"), ..., fo(z!, ..., 2™))

we have div(v) = > gﬁ

Definition 130 Let f : U C R” — R be a C? function. The Laplacian Af : U — R is a
function on U given by
Af = div(grad f)

In Euclidean coordinates, Af = 2

i=1 g2

Definition 131 (Hodge star) Given a differential k-form w € Q¥(U), U C R", its Hodge
star is the (n — k)-form xw € Q"% (U) defined by extending the assignment

*dz A A da = (fl)C’dxjl Ao A dadnk

where iy < -+ <ig,J1 <+ < Jnek and o(i1, ooy ik, J15 -, Ju—k) @S the permutation of {1,...,n}
by sky-linearity.

Remark: Note that for a k-form w on U C R”, x % w = (—1)k=k)y,

Proposition 132 Let v be a differentiable vector field on U C R™. Then the divergence of v
satisfies
div(v) = *(dxw), where w = (v,-)

Proposition 133 Let f: U C R" be a C? function. Then
Af =div(grad f) = xd x f

Definition 134 (Rotational) Let v be a differentiable vector field on U C R™. The rota-
tional of v is the (n — 2)-form rot(v) defined by

rot(v) = *(dw), where w = (v, -)

If n = 3, then rot(v) is a (3 —2 = 1)-form, and hence there is a vector field, called the curl
of v and denoted by curl(v) such that

(curl(v), ) = rot(v) = *(dw)
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Proposition 135 Consider R® with Buclidean coordinates x,y,z and let v = (id,F) : U C
R3 — U x R3, where F = (f1, f2, f3), be a differentiable vector field on U. Then

cu]rl(’u):VxF:<af3_af2 é)ﬁ_aﬁi’%_aﬁ>

Remark: Let o = (v1,-) and ag = (v9,-) be linear functions on R? with standard inner
product then (vy X vy, ) = *(a1 A a2)

Proposition 136 Let f: U C R” = R be a C? function and v: U — U x R™ be a C? vector
field. Then

e rot(grad f) =0
e curl(grad f) =0 (n=3)

o div(curlv) =0 (n=3)

13 Integration of differential forms

Definition 137 A subset My C R™ is a regular C*°-smooth k-dimensional surface in R™ if
for every point x € My, there exists an open neighbourhood x € U in R™ such that

MU ={(z,y) €Uly = F(2)}

in a graph of a smooth map F : V C RF — R" % where z = (2™, ..., 2% ), y = (271, ..., xIn—*)
with 11...%%, J1.--Jn—k all distinct

Definition 138 A regular level set M, = {f = ¢} of a smooth function f:R"™ — R,i.e., such
that grad f(x) # 0 for every x € M., is a reqular C*-smooth (n — 1)-dimensional surface in
R"™, whenever M, is non-empty. More generally,

Me..c, o ={zeR"|F(z)=(c1,....cn)} # 0

of a C*®-smooth map F : R™ — R % j.e., such that rank DF|,=n—kVz e M,  _,,is
a regular C°°-smooth k-dim surface in R™.

Definition 139 Let M* be a reqular C™-smooth surface in R™. A differential k-form on MF
is a field of alternating k-linear functions

Wlg : TeME x - x T,M* - R

where Ty M* = {v € R™v = %(0), with v a C' differential curve in M* C R™ with (0) = x}
is the tangent space of M* at z

Definition 140 A smooth reqular k-dim. surface My, is called orientable if it admits a smooth
nowhere vanishing top (=of degree k) form
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Theorem 141 A compact regular C* smooth k-surface M* in R™ is a finite union of F;(D;)
where

Fi:RF - MF cR", F; e C®(R")
is such that F; is a C* diffeomorphism onto its image in M*, D; C R™ is a k-dim compact
convex polyhedron and F;(int D;) U F;(int D;) =, i # j

Definition 142 Any C' differentiable map F : D C R — R™ where D is a compact convex
k-dim. polyhedron in R¥, together with an orientation + on D, is called k-dimensional cell.
If o = (F,£D) is a k-dim cell and w is a k-form on R™, then

/w:/ F*w::l:/ g(z)dz*...dz"
o D D

where F*w = g(z)dx'...dz"
Definition 143 A k-chain in R™ (or a regular smooth surface M¢ C R™) is a finite formal

sum of the form
n
Ck = Z mq0;
i=1

where m; € 7 and o; = (F;, £D;) is a k-cell, take up to the natural equivalence relation:
mio + moo = (m1 +ma)o, —o=(F,—D)

The set of chains because an abelian group under the formal sum operation and we define the
integral of a differential k-form w over a k-chain C as

n
[o=>m
Cy i—1 o;

Proposition 144 Let Dy and Dy be two compact convex polyhedral in RF and let

where Cj, = Y1 | m;o;

F:U—V, DicUCRF DycVcCR*

be a C' smooth diffeomorphism sending Dy onto Dy and preserving the orientation on RF.

Then for any (C°) k-form w on Do
/ Frw= / w
D, Ds

Corollary 145 Let o = (f, D) be a k-cell and w a differential k-form in R™. If F : R — Rk

is a C diffeomorphism, then
/ v = /w
F—1(o) o

where F~Y(o) = (f o F, F~Y(D)). Similarly, if Cx = >~ m;o; is a k-chain, then

/ F*w:/ w
F*l(Ck) Ck

where F~1(C},) = Zi-c:l miF~ (o)
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13.1 Stokes’s theorem
Definition 146 Let o(F,D), F: D C R¥ — R"™ be a k-cell. The boundary Oo is defined by

602205_17 O-zk_lz(F’Di?Di)
where D; are the faces of D oriented by the outward normal i. The boundary OCYy, of a k-chain
is defined by
n
8Ck = ijaaj

j=1
Proposition 147 For a k-chain Cy, 00C, =0

Theorem 148 (Stokes’s theorem) Let w be a Cl-smooth differential (k — 1)-form on R"
(or on a compact regular orientable C*°-smooth surface M in R™). Then for every k-chain

C in R"™ (contained in M)
/ dw = / w
Ch dCk

Corollary 149 Let M be a compact regular orientable C°°-smooth k-surface in R™ with
boundary OM. Then for every Cl-differentiable (k — 1)-form w on M,

/M = /8M gw)

where g : OM — M denotes the inclusion map.

Definition 150 A subset M* C R" is a reqular C*®-smooth k-dimensional surface with
boundary if for every point x € MF there exists an open neighbourhood U of x in R™ such
that

M*NU ={(z,y) € Uly = F(2)}

is a graph of a smooth map F : W C RF — R"™* where z = (z%,...,2%), y = (271, ..., xIn—*)
WA 1, ooy By J1s -oes J—tk all distinct and W 1s either

e an open ball B(zy) or
e a part of By(zo) cut out by a C* function f: W = B.(z0) N {f < 1}
assuming {f = 1} is a regular level set for f on RF

Corollary 151 (Green’s theorem) Let U C R? be an open bounded subset in R? with ou
a closed reqular C™-smooth curve. If w is a C'-smooth 1—form on (a neighbourhood of) U,

then
/ dw = / w
M=U C=0U

which in coordinates (x,%y) on R? reads as

ob  Oda

where w = a(z,y)dx + b(z,y)dy
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Corollary 152 (Divergence Theorem) Let U CE€ R? be an open bounded subset in R>
with OU a closed regular C*-smooth 2-surface. Let v be a C vector field on (a neighbourhood

of) U. Then

where w = dx AdyAdz is the standard volume form on R3. In coordinates, if v has components

vt =vl(x,y, 2), 0¥ =v3(z,y, 2), v} = v3(x,y,2), the r.h.s

/ dy(w) = / 7v1dy Adz +v3dz A dz + v3dz A dy
S=0U S=0U

[svdii flux through S

Corollary 153 (Curl theorem) Let M? C R? be a compact reqular oriented C*°-smooth
two-surface in R® with boundary OM?. Let v be a C' one-form in R®. Then

/ curl(v)-dﬁ:/ *xrot(v) :/ w
M? M? oM?

where w = (v,-), with (-,-) the standard inner product on R3

Corollary 154 (Gradient Theorem) Let o = (v,[a,b]), 7 : [a,b] = R™ be a 1—cell in R"
and let f :R™ — R be a C'-function. Then

[ dr = 1te®) - flota)
Theorem 155 (Brouwer’s fixed point theorem) Let B,.(0) C R™ be a closed ball in R™

around the origin and f : B.(0) — B,(0) be a C?-smooth map. Then exists at least one fized
point xg € B, (0):

f(zo) = 20
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