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1 Introduction

This notes are based on the material of the Lecture’s notes and the course textbook.

2 Derivatives

Definition 1 Let f : U → Rm be given where U is an open subset of Rn. The function f is
differentiable at p ∈ U with derivative (Df)p = T if T : Rn → Rm is a linear trasformation
and

f(p+ v) = f(p) + T (v) +R(v) ⇒ lim
|v|→0

R(v)

∥v∥
= 0

We say that the Taylor remainder R is subliear because it tends to 0 faster than ∥v∥.

Remark: Df is the total derivative or Frechet derivative and if the function is differen-
tiable at U then the map x 7→ (Df)x defines a function

Df : U → L(Rn,Rm)

where L(Rn,Rm) is the set of linear transformations T : Rn → Rm

Theorem 2 If f is differentiable at p then it unambiguosly determines (Df)p according to
the limit fomrula, valid for all u ∈ Rn,

(Df)p(u) = lim
t→0

f(p+ tu)− f(p)

t

Definition 3 If f is differentiable at p, then for all basis vector ei ∈ Rn (orthonormal),

∂fi
∂xj

∣∣∣∣
p

= lim
t→0

fi(p+ tej)− fi(p)

t

are the ijth partial derivative of f at p if the limit exists.

Definition 4 (Jacobian Matrix) If f is differentiable (in coordinates:
f = f1(x1, ..., xn), ..., fm(x1, ..., xn)), then

(Df)p =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


where the rows of Df |p are the transpose of the gradient of fi at p for all i ∈ {1, ...,m}
(∇T fi(p) )
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Corollary 5 If the total derivative exists then the partial derivatives exist and they are the
entries of the matrix that represents the total derivative

Remark: Do not confuse the total derivative Df |p with the direction derivatives of f at
p ∈ U which is the limit, if exists

∇pf(u) = (Df)p(u) = lim
t→0

f(p+ tu)− f(p)

t

If the i, j-th partial derivatives of f at p exist for all i ∈ {1, ...,m}, then together they form
the directional derivative of f in this specific ei direction.

Remark: If f is differentiable, then

∇pf(u) = ∇f(p) · u =
∂f

∂x1
u1 + · · ·+ ∂f

∂xn
un

Proposition 6 Let Rn and two norm ∥ · ∥a, ∥ · ∥b, then

∃r1, r2 > 0 s.t. ∀v r1∥v∥a ≤ ∥v∥a ≤ r2∥v∥b

Theorem 7 Differemtiability implies continuity

Theorem 8 If the partial derivatives of f : U → Rm exist and are continuous then f is
differentiable.

Theorem 9 Let f and g be differentiable. Then

(a) D(f + cg) = Df + cDg

(b) D(constant) = 0 and D(T (x)) = T where T is a linear map.

(c) D(g ◦ f) = Dg ◦Df Chain Rule

(d) D(fg) = Dfg + fDg Leibniz Rule

Theorem 10 A function f : U → Rm is differentiable at p ∈ U if and only if each of its
components fi is differentiable at p. Furthermore, the derivative of its ith component is the
ith component of the derivative

Theorem 11 (Mean Value Theorem) If f : U ⊂ Rn → Rm is differentiable on U and
the segment [p, q] is contained in U then

∥f(q)− f(p)∥ ≤M∥q − p∥

where M = sup{∥(Df)x∥ : x ∈ (p, q) ⊂ U}.

Theorem 12 ( C1 Mean Value theorem) If f : U → Rm is of class C1 (its derivative
exists and is continuous) and if the segment [p, q] ⊂ U then

f(q)− f(p) =

∫ 1

0
(Df)p+t(q−p) dt(q − p)

where the integral is the average derivative of f on the segment. Note that conversely it holds
too.

Corollary 13 Assume that U is connected and open. If f : U → Rm is differentiable and for
each point x ∈ U we have (Df)x = 0 then f constant.
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3 Higher Derivatives

The derivative Dkf ∀k ∈ N is the same sort of thing that f , namely a function from a open
subset of a vector space into another vector space.

Definition 14 Assume f : U ⊂ Rn → Rm is differentiable in U , then f is second differen-
tiable at q ∈ U if Df : U → L(Rn,Rm) is differentiable at q ∈ U

Remark: The second derivative at p is a linear map from Rn into L. For each v ∈ Rn,
(D2f)p(v) belongs to L and therefore is a linear transformation Rn → Rm so (D2f)p(v)(w)
is bilinear and we write it as (D2f)p(v, w). The higher derivatives are defined in the same way.

Remark: If f second-differentiable on U then x 7→ (D2f)x defines a map

D2f : U → L2 = L(Rn,L(Rn,Rm)) ∼= L(Rn × Rn,Rm)

where L2 is the vector space of bilinear maps Rn × Rn → Rm
Remark: Let

∥f(v)∥ = sup

{
∥f∥∥v∥
∥v∥

: v ∈ R
}

then

∥Df(v)∥ ≤ ∥Df∥∥v∥
∥D2f(v)∥ ≤ ∥D2f∥∥v∥2

∥Dkf(v)∥ ≤ ∥Dkf∥∥v∥k k ∈ N

Theorem 15 If (D2f)p exists then (D2fk)p exists, the second partials at p exist, and

(D2fk)p(ei, ej) =
∂2fk(p)

∂xi∂xj

Conversely, existence of the second partials implies existence of (D2f)p, provided that the
second partials exist at all points x ∈ U near p and are continuous at p

Theorem 16 If (D2f)p exists then it is symmetric: for all v, w ∈ Rn we have

(D2f)p(v, w) = (D2f)p(w, v)

Corollary 17 Corresponding mixed second partials of a second-differentiable function are
equal,

∂2fk(p)

∂xi∂xj
=
∂2fk(p)

∂xj∂xi

Corollary 18 If f is differentiable on U , ∂2f
∂xi∂xj

exist on U and are continuous at p, then

∂2fk

∂xi∂xj
=

∂2fk

∂xj∂xi
∀i, j, k

Corollary 19 The rth derivative, if it exists, is symmetric: Permutation of the vectors
v1, ..., vr does not effect the value of (Drf)p(v1, ..., vr). Corresponding mixed higher-order
partials are equal.
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3.1 Smoothness class

Definition 20 f : U ⊂ Rn → Rm is of class Ck on U if f,Df,D2f, ...,Dkf exist on U and
Dkf is continuous on U

Definition 21 f : U ⊂ Rn → Rm is of class C∞ if f ∈ Ck ∀k ∈ N

Corollary 22 f ∈ Ck (or C∞) iff all partial derivatives up to order k (or for all partial
derivatives) exist and are continuous.

Consider the set Ck(U,Rm) of Ck maps on U , for which the following norm is bounded

∥f∥Ck := max
0≤i≤k

sup
x∈U

∥Dif |x∥

Theorem 23 (Ck(U,Rm), ∥ · ∥Ck) is a Banach space for all k <∞. A sequence of functions
fn ∈ Ck(U,Rm) converges to f ∈ Ck(U,Rm) in ∥ · ∥Ck iff

fn ⇒ f, · · · , Dkfn ⇒ Dkf

on U (uniform converges of f and its differentials up to order k )

Corollary 24 (Ck −M test) Let fn ∈ Ck(U,Rm) be such that ∥fn∥Ck ≤ an, where
∑∞

n=1 an
converges. Then

∑∞
n=1 fn converges to a function f ∈ Ck(U,Rm). Moreover, for all s ≤ k:

D2f =

∞∑
n=1

D2fn

term by term differentiable is valid for all s ≤ k.

4 Taylor’s theorem

Theorem 25 (Taylor’s theorem) Let f : U ⊂ Rn → Rm be of class CN on U . Let
[p, p+ v] ⊂ U . then

f(p+ v) = f(p) +
N−1∑
k=1

1

k!
Dkf |p( v...v︸︷︷︸

k times

) +RN−1(f, v)

where

RN−1(f, v) =

∫ 1

0

(1− t)N−1

(N − 1)!
DNf |p+tv(v...v)dt

Remark: When N = 1, we get the C1 mean value theorem

Corollary 26 Under the assumptions of the theorem,

f(p+ v) = f(p) +

N−1∑
k=1

1

k!
Dkf |p( v...v︸︷︷︸

k times

) + o(∥v∥N )

where o(∥v∥n) = f(v) ⇔ f(v)/∥v∥n → 0 as ∥v∥n → 0

Remark: Let x = v + p so that vi = (x− p)i. In two dimension with x1 = x and x2 = y

f(x) = f(p) +
∂f

∂x
(p)(x− x0) +

∂f

∂y
(p)(y − y0) + · · ·
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5 Flat vs Analytic functions

In the previous section we have discuss the Taylor expansion and we learn that given f : U ⊂
Rn → Rm (for simplicity m = 1) the Taylor’s theorem holds up to any order. In general,
the series doesn’t have to converge. Moreover, if the series does converge, it doesn’t have to
converge to a given function.

Definition 27 When a function f have ∀k ∈ N Dkf |0 = 0 and is smooth, then such f is
called flat.

Definition 28 A function f : U ⊂ Rn → R is (real) analytic if ∀p0 = (x01...x
0
n) ∈ U

f =
∞∑
k1=0

· · ·
∞∑

kn=0

ck1,··· ,kn(x1 − x01)
k1 · · · (xn − x0n)

kn

convergent power series in a neighbourhood of p0. Alternatively, a function f is (real) analytic
on U if f ∈ C∞ on U and the Taylor series

∞∑
k=0

1

k!

∑
i1,··· ,ik

∂kf

∂xi1 · · · ∂xik
(xi1 − x0i1) · · · (xik − x0ik)

converges to f in a neighbourhood of p0 = (x01...x
0
n) for all p0 ∈ U (note that the series are

local).

5.1 Relation with complex analysis

Definition 29 f : U ⊂ Cn → C is holomorphic if f is R differentiable on U ⊂ Cn ∼= R2n

and ∂f
∂zj

= 0 for all j = 1, ..., n where

∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
zj = xj + iyj. This implies that Df |p is complex linear at every p ∈ U .

Theorem 30 f is holomorphic on U iff near every point it can be represented by a convergent
power series

Corollary 31 Holomorphic functions F : Cn → C restricted to Rn are real-analytic (Ref(Rez1...Rezn)
is real analytic ). Conversely, a real analytic function h : Rn → R admits (at least locally) a
holomorphic extension

6 Find extrema of a function

Definition 32 Let f : U ⊂ Rn → R be a function. It is said to have a local minimum (resp.,
maximum) at p0 ∈ U if ∃ a small neighborhood p0 ∈ V ⊂ U such that

f(p) ≥ f(p0), resp.f(p) ≤ f(p0)
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for all p ∈ V . p0 is a strict local minimum (resp. maximum) if

f(p) > f(p0), resp.f(p) < f(p0)

for all p ∈ V \{p0}.

Definition 33 Local minima and maxima are called extrema of a function

Proposition 34 Consider a function f : U ⊂ Rn → R. Assume that ∂f
∂x1

, · · · , ∂f∂x2 exist at a
point p0 ∈ U . If p0 is a local extremum of f , then

∂f

∂xi

∣∣∣∣
p0

= 0, i = 1, ..., n

Remark: Points where
∇f =

[
∂f
∂x1

· · · ∂f
∂xn

]
vanishes are called critical points. They don’t have to be minima or maxima

Theorem 35 Let f : U ⊂ Rn → R be of class C2 in a neighbourhood of p0 ∈ U which is a
critical point of f (∇f |p0 = 0). If the Hessian

∂2f

∂xi∂xj

∣∣∣∣
p0

∈Mat(n× n,R)

is positive (resp., negative) definite, i.e. the eigenvalues are positive (resp. negative) then
p0 is a local minimum (resp., maximum). If the eigenvalues are both positive and negative,
then we have a saddle point. Instead, if the eigenvalues are 0 then we do not have enough
information to tell.

Remark: To check positive/negative definiteness, one can use Sylvester’s criterion from
Linear algebra

7 Implicit function theorem

Definition 36 Two open subsets V1 and V2 of Rn are called Ck(resp.,C∞)-diffeomorphic if
there exists a bijection f : V1 → v2 such that f and f−1 are of class Ck (resp.,C∞).

Remark: If f is a bijection and f and f−1 are C0, then f is called a homeomorphism

Theorem 37 (Implicit Function Theorem) Let U be an open subset of Rn × Rm and
F = (f1, ..., fm) : U → Rm be of class Ck(C∞), k ≥ 1, on U . Consider the following equation

F (x, y) = z0

where z0 ∈ Rm. If there exists (x0, y0) ∈ U with F (x0, y0) = z0 and the m×m matrix

B =
∂fi
∂yj

∣∣∣∣
(x0,y0)

is invertible, then the equation admits a unique solution y = g(x) near (x0, y0). Furthermore,
g is Ck(C∞)
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Theorem 38 (Implicit Function Theorem 2) If the mapping F : U → Rn defined in a
neighborhood U of the point (x0, y0) ∈ Rm+n is such that

• F ∈ C(p)(U,Rn), p ≥ 1

• F (x0, y0) = 0

• F ′
y(x0, y0) is an invertible matrix

then there exists am (m+ n) dimensional interval I = Imx × Iny ⊂ U , where

Imx = {x ∈ Rm
∣∣ |x− x0| < α} Iny = {y ∈ Rn

∣∣ |y − y0| < β}

and a mapping f ∈ C(p)(Imx , I
n
y ) such that

F (x, y) = 0 ⇔ y = f(x)

for any point (x, y) ∈ Imx × Iny and

f ′(x) = −F
′
x(x, f(x))

F ′
y(x, f(x))

Theorem 39 If h : U ⊂ Rn → Rn is Ck(C∞), k ≥ 1 and Dh|x0 is invertible, then h is a
Ck-diffeomorphism near x0: there exists a small open neighbourhood x0 ∈ U1 ⊂ U such that
h : U1 → U2 = h(U1) is a Ck-diffeomorphism. In particular, U2 is open and h|U1 is an open
map (for any V an open subset pf U1, the image h(V ) is open)

8 Banach Fixed point Theorem

Definition 40 (Lipschitz) A function f is Lipschitz in U w.r.t the variables x = (x1, ..., xn)
and Lipschitz constant L if

∥f(x)− f(y)∥ ≤ L∥x− y∥

for all x, y ∈ U .
Similarly, f is said to be locally Lipschitz in U w.r.t. x = (x1, ..., xn) if for every point x0 ∈ U
there exists a neighbourhood x0 ∈ V ⊂ U such that

∥f(x)− f(y)∥ ≤ LV ∥x− y∥

on V . In other words, f is Lipschitz on V

Theorem 41 (Banach Fixed-point Theorem) Let (M,d) be a complete metric space.
Let f :M →M be such that

d(f(q), f(p)) ≤ Kd(q, p)

for all q, p ∈ M , where k < 1 is a constant not depending on q and p ∈ M . Then f has a
unique fixed point p0 ∈M , i.e.

f(p0) = p0 f(p) = p⇒ p = p0
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9 Ordinary Differential equations

Definition 42 Let t ∈ R and F : U ⊂ Rn+1 → R be a function of n + 1 variables. An
ordinary differential equation (ODE) of n− th order is an equation of the form

F (t, x, x′, x”, ..., x(n)) = 0

where t is the independent variable, x = x(t) is a function of t and x′, x”, · · · , x(n) are its
derivatives.
A function x = x(t) is a solution of the ODE if the substitution of x(t), x′(t), ..., x(n)(t) into
F makes the ODE hold identically

Remark: The above equation is implicit and therefore the ODE is said to be in implicit
form. An n-th order ODE is siad to be in explicit form if it can be written as follows

x(n) = f(t, x, x′, ..., x(n−1))

Definition 43 Let t ∈ R and fi : U ⊂ Rn+1 → R , i = 1, ...n, be functions of n+1 variables.
A first order system of differentiable equations (in explicit form) is a set of n equations

x′1 = f1(t, x1, ..., xn)
...

...

x′n = fn(t, x1, ..., xn)

Or, in more compact notation,

x′ = F (t, x), F : U ⊂ Rn+1 → Rn

A solution of this ODE is a vector function

x = x(t) = (x1(t) · · ·xn(t))

that is differentiable on some interval t ∈ (a, b) ⊂ R and if substitution of x = x(t) into the
x′ = F (t, x) makes the equality hold trivially.

Definition 44 (Initial value problem) Initial value problem (IVP) asks for solution of
x′ = F (t, x) that passes through a given point (t0, x0) ∈ U ⊂ Rn+1, i.e. x(t0) = x0 ∈ Rn. The
solution of the IVP is equivalent to the integral equation

x(t) = x0 +

∫ t

t0

F (t, x(t))dt

More precisely, assume F ∈ C0 and let x = x(t) be a solution, then

x(t) = x(t0) +

∫ t

t0

x′(t)dt = x0 +

∫ t

t0

F (t, x(t))dt

Conversely, if x = x(t) is a continuous solution of

x(t) = x0 +

∫ t

t0

F (t, x(t))dt

Then, x = x(t) ∈ C1, x(t0 = x0 and x′(t) = F (t, x(t)).
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9.1 Linear ODEs

Definition 45 A system of Linear ODEs is an explicit system of ODEs of the following form

x′ = A(t)x+B(t)

where A is a time dependent n× n matrix and B(t) ∈ Rn is a time dependent vector

Definition 46 A linear system is called homogeneous if B(t) = 0, and otherwise it is called
inhomogeneous

Definition 47 A linear system is said to have constant coefficients if A(t) = A(t0) and
B(t) = B(t0), i.e. they do not depend on t

Theorem 48 Consider a linear system

x′ = A(t)x

where A = A(t) : (a, b) ⊂ R → Mat(n × n,R) is continuous. Then the set of solutions is a
vector space isomorphic to Rn.

Theorem 49 Consider a linear system x′ = A(t)x + B(t), where A = A(t) : (a, c) ⊂ R →
Mat(n×n,R) and B = B(t) : (a, c) ⊂ R → Rn are C0. Assume xinh = xinh(t) is a solution of
the inhomogeneous system and xh = xh(t) is an arbitrary solution of the homogeneous sytem
x′ = A(t)x. Then, x = xh(t) + xinh(t) is a solution of x′ = A(t)x+B(t)

Remark: The difference between two solutions of the inhomogeneous system is a solution
of the homogeneous one.

Proposition 50 Consider an IVP

x′ = Ax x(0) = x0 ∈ Rn

where A has constant coefficients. Then it can be exactly solved and the solution has the form

x(t) = eAtx0

where eAt is the exponential of an n× n matrix At, defined by series

exp{At} =

∞∑
k=0

1

k!
Aktk

Remark: To solve a particular ODE, it is helpful to use the Jordan decomposition of A.
For more info look in the lecture notes of Linear system

Theorem 51 (Existence and uniqueness) Let F = F (t, x) : U ⊂ R × Rn → Rn be con-
tinuous on U and locally Lipschitz on U w.r.t x = (x1, ..., xn). If (t0, x0) ∈ U , then the
IVP {

x′ = F (t, x)

x(t0) = x0

has a unique solution, which can be extended to the boundary of U
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Theorem 52 Let F : (d, c) × Rn → Rn be continuous. Take a segment [a, b] ⊂ [d, c] and
assume that F is globally Lipschitz on [a, b]× Rn w.r.t x ∈ Rn. Then the IVP{

x′ = F (t, x)

x(a) = x0

has a unique solution defined on [a, b].

Corollary 53 Consider a linear system of 1 − st order ODEs x′ = A(t)x + B(t), where
A : (d, c) → Mat(n × n,R) and B : (d, c) → Rn are continuous. Then the IVP, x(t0) = x0
where t0 ∈ (d, c) has a unique solution on (d, c) for all initial conditions x0 ∈ Rn

Theorem 54 (Peano existence theorem) If F : U ⊂ R × Rn → Rn is continuous on U ,
then every IVP {

x′ = F (t, x)

x(t0) = x0

where (t0, x0) ∈ U has a (possibly non-unique) solution.

Theorem 55 (Separations of variables for 1-d ODEs) Consider an ordinary differen-
tial equation of the form

x′ = g(x)f(t)

where g : U ⊂ R → R is C0 and non-zero on U and f : V ⊂ R → R is C0. Then every initial
value problem {

x′ = g(x)f(t)

x(t0) = x0

where (t0, x0) ∈ U×V . has a unique local solution, which can moreover be obtained by solving∫ x

x0

dx

g(x)
=

∫ t

t0

f(t)dt

for x as a function of t

Definition 56 Any set of n linearly independent solutions x1(t), ..., xn(t) is called a funda-
mental system of solutions; the matrix X(t), where X(t) = (x1(t), ..., xn(t)), is also called a
fundamental system or a fundamental matrix.

Remark: Any solution x(t) of x′ = A(t)x cen be written as

x(t) = X(t)

c1...
cn


where ci are constant for all i ∈ {1, ..., n}.

Remark: Every fundamental matrix X = X(t) solves the matrix equation

X ′ = A(t)X
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and that it can be written as

X(t) = XE(t) · C

where C is a constant and non-degenerate n× n matrix and XE(t) is the unique solution of
matrix IVP

(XE)′ = A(t)XE , XE(t0) = E

where E is the identity matrix.

Definition 57 Let Y = Y (t) be a solution to the matrix equation X ′ = A(t)X. The (time-
dependent) determinant of Y (t) is called the Wronskian determinant or Wronskian of Y (t).

Theorem 58 Let A = A(t) be continuous and let X = X(t) be a solution of the matrix
equation X ′ = A(t)X. Then X(t) is a fundamental matrix iff the Wronskian w(t) of X(t) is
non-zero. Moreover, w(t) satisfies the differential equation

w′ = (trA(t))w

where trA(t) is the trace of A(t). Hence,

• w(t) = w(t0) exp
{∫ t

t0
tr(A(s))ds

}
• det(XE(t)) = exp

{∫ t
t0
tr(A(s))ds

}
where XE(t) solves X ′ = A(t)X, X(t0) = E.
In particular, w(t) is either identically 0 or it is non-zero for every t

9.2 Variation of constant

Consider an inhomogeneous system

x′ = A(t)x+B(t)

where

A : (c, d) →Mat(n× n,R)
B : (c, d) → Rn

are continuous. Let X(t) be the fundamental matrix for the homogeneous equation x′ =
A(t)x. In the variation of constant method, the constants in

X(t) = c = X(t)

c1...
cn


which is the general solution to x′ = A(t)x, are varied.
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Definition 59 Given the above inhomogeneous system and fundamental matrix, then

c(t) = c(t0) +

∫ t

t0

X−1(s)B(s)ds

and the general solution of the inhomogeneous equation has thus the form

X(t)

(
c(t0) +

∫ t

t0

X−1(s)B(s)ds

)
Moreover, to solve the IVP (with x(t0) = x0) one takes X(t) to be such that X(t0) = E and
sets c0 = x0.

9.3 Vector fields and their flows

Consider a system of 1 − st order ODEs x′ = F (x). Where F = (f1 ... fn) : U ⊂ Rn → Rn
is of class Ck. The map F is also called a Ck vector field since it assigns to each point
x(x1...xn) a vector F (x) ∈ Rn.

Another represenation of a vector field is that of a map

V : U → U × Rn, V (x) = (x, F (x))

which assigns to every point x ∈ U a vector F (x) ∈ Rn attached to x.

Remark: Geometrically a solution of the ODE x′ = F (x) is a curve x = x(t) that is
tangent to the vector field at every point and, moreover, the magnitude and direction of x′(t)
are equal to that of F (x(t)).

Remark: ODEs are sometimes written as x′ = V (x), where V is a vector field (or x′ = V (t, x)
in time-dependent case).

Definition 60 When F = F (x) (V = V (x)) is independent of t, the ODE x′ = F (x) is
called autonomous

Definition 61 The flow of a (at least Lipschitz) vector field is a (locally defined) map

gt(x) : (−ϵ, ϵ)× U → Rn

as follows: gt(x) is the unique (maximal) solution of x′ = F (x) with g0(x) = x.

Proposition 62 For an autonomous ODE x′ = F (x) and t, s ∈ R, |t| < ϵ, |s| < ϵ, |t+s| < ϵ,
one has

gt+s(x) = gt(gs(x)) = gs(gt(x))

Corollary 63 Assume that solutions of x′ = F (x) are defined for all t ∈ R. Then the flow
gt(x) defines a group homomorphism

t ∈ R → gt(·)

from R into the group of maps from U ⊂ Rn to itself
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Remark: if F ∈ Ck then
gt(x) : (−ϵ, ϵ)× U → U

is of class at least Ck−1

Theorem 64 Consider a C∞ vector field V (x) on U ⊂ Rn. Assume that all solutions of
x′ = V (x) are defined for all times t ∈ Rn. Then the flow gt of V

gt(x) : R× U → U

is C∞ smooth. Moreover, for each fixed t0, the map

gt0(·) : U → U

is a C∞ diffeomorphism.

10 Multiple integrals

Definition 65 Let f : In =
∏n
i=1[ai, bi] → R be a real-valued function. Consider a partition

Pi : ai = xi0 < xi1 < · · · < xiki = bi

of each segment [ai, bi] and the resulting partition of the box In by smaller boxes Ini1,...,in,

Ini1,...,in = [x1i1 , x
1
i1+1]× · · · × [xnin , x

n
in+1]

Then, a Rieman Sum is a sum of the form

R(f, P, S) =

k1−1∑
i1=0

· · ·
kn−1∑
in=0

f(Si1,...,in)
∣∣Ini1,...,in∣∣

where Si1,...,in ∈ Ini1,...,in are sample points and
∣∣∣Ini1,...,in∣∣∣ is the volume of Ini1,...,in, i.e. the

product o fthe lengths of its sides:

|x1i1+1 − x1i1 | × · · · × |xnin+1 − xnin |

Definition 66 A function f : In =
∏n
i=1[ai, bi] → R is called Rieamann-integrable on In

with integral

J =

∫
· · ·

∫
In

f(x)dx1 · · · dxn

if ∀ϵ > 0 ∃δ > 0 such that for all partitions P of In consisting of boxes Ini1,...,in with diameter
d(Ini1,...,in) less than δ and any choice of sample points Si1,...,in, Si1,...,in ∈ Ini1,...,in, for the
corresponding Riemann sum

|J −R(f, P, S)| < ϵ

In other words, f is Riemann integrable when the following limit exists

J := lim
d(p)→0

R(f, P, S)

where the limit is taken along all marked partitions (P, S) with the diameter d(p) := max
i1,...,in

d(Ini1,...,in)

tending to zero.
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Proposition 67 If f : In → R is Riemann-integrable, then it is bounded.

Definition 68 Consider a function f : In → R and let P be a partition of In. Set

mi1,...,in := inf
x∈Ini1,...,in

f(x) Mi1,...,in := sup
x∈Ini1,...,in

f(x)

The sums

r(f, P ) =

k1−1∑
i1=0

· · ·
kn−1∑
in=0

mi1,...,in

∣∣Ini1,...,in∣∣
R(f, P ) =

k1−1∑
i1=0

· · ·
kn−1∑
in=0

Mi1,...,in

∣∣Ini1,...,in∣∣
are called, respectively, Lower and Upper Darboux sums of f relative to P

Definition 69 Consider a function f : In → R and let P be a partition of In. Then, the
quantaties ∫

− In

fdx1 · · · dxn := sup
P
r(f, P )

−∫
In
fdx1 · · · dxn := inf

P
R(f, P )

are called, respectively, Lower and Upper integrals of f on In.

Remark: Note that the sup
P

(inf
P

) is taken with respect to all partitions P of In

Lemma 70 For all marked partitions (P, S), we have

• r(f, P ) ≤ R(f, P, S) ≤ R(f, P )

• r(f, P ) ≤
∫
−In

fdx ≤
−∫
Infdx ≤ R(f, P )

Theorem 71 (Darboux’s criterion of Riemann integrability) A function f : In → R
is Riemann integrable iff f is bounded and the lower and upper integrals coincide

−∫
In
fdx =

∫
− In

fdx

Remark: For a bounded function, the lower and upper integrals of f always exist. This
follows from the above lemma ii.

Definition 72 (zero set) A subset Z ⊂ Rn is a zero set (or of Lebesgue measure zero) if
∀ϵ > 0 there exists a countable covering of Z by (open or equivalently closed) boxes Inj such
that ∑

j

∣∣Inj ∣∣ < ϵ

14 /faculty of Science and Engineering



University of Groningen Multivariable analysis /Zambelli Lorenzo

Proposition 73 Let Z ⊂ Rn be a zero set. Then W ⊂ Z is also a zero set and a countable
union of zero sets is again a zero set

Theorem 74 (Riemann-Lebesgue theorem/Lebesgue’s criterion) A function f : In →
R is riemann integrable iff it is bounded and continuous almost everywhere on In,i.e., there
exists a zero set Z ⊂ In such that f is continuous on In\Z

Definition 75 Let E be a bounded subset of Rn and χE be the indicator function (takes value
1 if x ∈ E and 0 otherwise). A function f : E → R is Riemann integrable on E if the function
f · χE(x) is Riemann integrable on some box In containing E. The integral of f over E is
then defined by ∫

E

f dx :=

∫
E⊂In

f · χE dx

Proposition 76 If In1 and In2 contain E, then
∫

E⊂In1
f · χE dx and

∫
E⊂In2

f · χE dx either both

exist and are equal or both do not exist.

Theorem 77 Let E ⊂ Rn be a bounded subset of Rn such that the boundary is a zero set.
Then a function f : E → R is Riemann integrable iff f is continuous almost everywhere (i.e.
f continuous outside a zero set Z ⊂ E ⊂ Rn).

Moreover, if E is bounded and ∂E is not a zero set, then χE is not Riemann integrable
on E.

Definition 78 A volume of E ⊂ Rn (if exists) is the Riemann integral∫
E
1 · dx1 · · · dxn

Theorem 79 (Change of variables formula) Let ψ : U → W be a C1-diffeomorphism
between subsets U and W of Rn. Let E be a bounded subset of Rn such that E ⊂ W . If f is
Riemann integrable on E, then g := (f ◦ψ) · |det(Dψ)| is Riemann integrable on ψ−1(E) and∫

ψ−1(E)

(f ◦ ψ) · |det(Dψ)| dx =

∫
E

f dy, y = ψ(x)

Theorem 80 (Fubini’s theorem) Assume that E1 ⊂ Rk and E2 ⊂ Rm are bounded and

let f : E1 ×E2 → R be Riemann integrable. Then both
∫
−E1

f(x, y)dx and
−∫
E1
f(x, y)dx exists

and integral on E2 with respect to y, then

∫
E2

∫
− E1

f(x, y)dx

 dy =

∫
E2

 −∫
E1

f(x, y)dx

 dy =

∫ ∫
E1×E2

f(x, y)dxdy

where x = (x1, ..., xk) and y = (xk+1, ..., xk+m).
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Corollary 81 Assume that E1 ⊂ Rk and E2 ⊂ Rm are bounded and let f : E1 × E2 → R be
Riemann integrable. Then

∫ ∫
E1×E2

f(x, y)dxdy =

∫
E2

∫
− E1

f(x, y)dx

 dy =

∫
E1

∫
− E2

f(x, y)dy

 dx

Corollary 82 Under preceding assumption
∫
E1
f(x, y)dx exists for almost all y. Similarly,∫

E2
f(x, y)dy exists for almost all x

Corollary 83 If f : Ik1 × Im2 → R and f is continuous, then the iterated integrals exist and
are equal to each other.

Corollary 84 Assume D ⊂ Rn−1 bounded, let ψ1, ψ2 : D → R and

E = {(x, y) ∈ Rn−1 × R |x ∈ Dψ1(x) ≤ y ≤ ψ2(x)}

and is bounded. If f : E → R is integrable then∫
E
f(x, y)dxdy =

∫
D

∫ ψ2

ψ1

f(x, y)dydx

Corollary 85 (Cavalieri’s principle) Let E ⊂ Rn−1 be bounded and let ∂E be a zero set.
Then

V ol(E) =

∫
E
dx1 · · · dxn−1dy =

∫
I1y

V ol(Ey)dy

where E ⊂ In−1
x × I1y , Ey0 = {(x, y) ∈ E|y = y0} is a y-slice of E and V ol(Ey0) is its

(n− 1)−volume; more precisely, any number between
∫
−Ey0

1 · dx and
−∫
Ey0

1 · dx

Remark: Note that by corollary,
∫
In−1
x

χEydx exists almost everywhere, so V ol(Ey) is

well defined almost everywhere and also ∂Ey is a zero set in Rn−1 for almost all y

Remark: The notion of the volume: V ol(E) =
∫
E 1 · dx, as follows from the Riemann

Lebesgue theorem, is well defined precisely for those bounded sets E, for which ∂E is a zero
set. Note also that it is invariant under Euclidean isometries by the change of variables
formula

10.1 Improper Integrals

Definition 86 Let E =
⋃∞
j=1Ej, where Ej ⊂ Ej+1 ⊂ Rn, each Ej is bounded and for each

j, ∂Ej is a zero set. Assume that f : E → R is integrable on Ej for all j and

J = lim
j→∞

∫
Ej

f dx

exists and doesn’t depend on Ej, then J is the improper integral of f on E (the same notation∫
E f dx = J is used)
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Proposition 87 If E =
⋃∞
j=1Ej, where Ej ⊂ Ej+1 ⊂ Rn, each Ej is bounded and for each

j, ∂Ej is a zero set, and E is also bounded with ∂E a zero set, then

• limj→∞ V ol(Ej) = V ol(E)

• For every integrable function f : E → R, its restriction to Ej is also integrable and

lim
j→∞

∫
Ej

f dx =

∫
E
f dx

Remark: This proposition shows that improper Riemann integrals generalise Riemann
integrals

Proposition 88 If f, g : E → R are both integrable on Ej (Ej bounded and ∂Ej a zero set),
|f | ≤ g on E and limj→∞

∫
Ej
g dx exists, then∫

E
g dx,

∫
E
|f | dx,

∫
E
f dx

exist

Definition 89 Assume that for all y ∈ [c, d) ⊂ R, the following improper integral exists:

F (y) =

∫ b

a
f(x, y)dx

where [a, b) ⊂ R and b is possibly +∞. It is assumed that on each segment [a, c] ⊂ [a, b), a
proper Riemann integral exists.

The improper integral converges uniformly on [e, d) if ∀ϵ > 0 there exist a neighbourhood
of the form (b0, b) (or (b0,+∞) where b = +∞) such that ∀c in this neighbourhood and
∀y ∈ [e, d) ∣∣∣∣∫ b

c
f(x, y)dx

∣∣∣∣ < ϵ

Theorem 90 Assume that f = f(x, y) and g = g(x, y), defined on [a, b)× [c, d) are integrable

w.r.t x on all [a, e) ⊂ [a, b) for all y ∈ [c, d). If |f(x, y)| ≤ g(x, y) and
∫ b
a g(x, y)dx converges

uniformly on [c, d), then so does the integral
∫ b
a f(x, y)dy (in particular, it is well defined

∀y ∈ [c, d))

Theorem 91 If f : [a, b)× [c, d) is continuous, the integrals∫ b

a
f(x, y)dx and

∫ d

c
f(x, y)dy

converge uniformly w.r.t y on all [c, e) ⊂ [c, d) and w.r.t x on all [a, r) ⊂ [a, b), respectively,
and there exists at least one iterated integral∫ d

c

∫ b

a
|f | dx dy or

∫ b

a

∫ d

c
|f | dy dx

then ∫ d

c

∫ b

a
f dx dy =

∫ b

a

∫ d

c
f dy dx
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Theorem 92 If f = f(x, y) : [a, b) × [c, d] → R and its partial derivative with respect to y
are continuous, the integral ∫ b

a
f ′y(x, y)dx

converges uniformly on [c, d] and
∫ b
a f(x, y)dx converges for at least one y in [c, d], then∫ b

a f(x, y)dy converges uniformly and

∂

∂y

∫ b

a
f dx =

∫ b

a
f ′y dx

Corollary 93 Let f : [a, b]× [c, d] → R. Assume f ∈ C0 and ∂f
∂y exists and is C0. Then∫ b

a
f(x, y)dx ∈ C1(y)

and
∂

∂y

∫ b

a
f(x, y)dx =

∫ b

a

∂

∂y
f(x, y)dx

11 Alternating k-linear forms

Definition 94 Given a vector space V over a field K, its dual V ⋆ is defied as

V ⋆ = L(V,K)

the space of linear functions from V to K

Remark: V ⋆ is itself a vector space over K.

Definition 95 Let V be finite-dimensional (and hence isomorphic to Kn, n < ∞) and
e1, ..., en ∈ V be a basis of V . The dual basis of e1, ..., en is the basis

e1, ..., en ∈ V ⋆

of V ⋆ defined by the rule ei(ej) = δij ∀i, j ≤ n

Remark: δij is known to be the Kronecker delta and is equal to 1 when j = i and 0
otherwise.

Proposition 96 Let e1, ..., en be a basis of V . Then the dual basis e1, ..., en is indeed a basis
of V ⋆. Moreover,

1. v =
∑n

i=1 v
iei ⇒ v =

∑n
i=1 e

i(v)ei

2. for any f ∈ V ⋆, f =
∑n

i=1 f(ei)e
i

Definition 97 Elements of V ⋆ = L(V,K) are called Linear functions or linear 1-forms
or covectors
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Definition 98 Given two vectors spaces V1 and V2 over a field K, a function

ω : V1 × V2 → K

is called bilinear or a bilinear form if it is linear in each argument, that is, if

ω(λv + u, s) = λω(v, s) + ω(u, s)

ω(v, λs+ r) = ω(v, s) + λω(v, r)

for all v, u ∈ V1; s, r ∈ V2, and λ ∈ K. The vector space of all bilinear maps w : V1×V2 → K
is denoted by L(V1 × V2,K)

Remark: Recall that the space L(V1 × V2,K) is isomorphic to the space L(V1L(V2,K)).

Definition 99 Given vectors spaces V1, ..., Vk over K, a function ω : V1 × · · · × Vk → K is
called k-linear or a k-linear form if it is linear in each argument, i.e., if ∀i, 1 ≤ i ≤ k and
∀vj ∈ Vj j ̸= i

ω(v1, ..., vi−1, ·, vi+1, ..., vk) : Vi → K

is linear. The space of k-linear maps is denoted by L(V1×· · ·×Vk,K) ≡ L(V1,L(V2, · · · L(Vk,K) · · · ))

remark: More generally, one can consider k-linear maps with values in another vector
space, rather than the field K.

Definition 100 Let V be a real vector space. A k-linear map ω : V × · · · × V → R is called
alternating if for every permutation σ of {1, ..., k} and every choice of v1, ..., vk ∈ V , we
have

ω(vσ(1), · · · , vσ(k)) = sign(σ)ω(v1, ..., vk)

The space of k-linear alternating maps ω : V × · · · × V → R is denoted by
∧k(V )⋆.

Theorem 101 The space
∧k(V )⋆ is a vector space

11.1 Wedge product

Definition 102 Let V be a real vector space and α, β be two linear functions on V (i.e.
elements of V ⋆ = L(V,R)). The wedge product of α and β is the map

α ∧ β : V × V → R

defined by

α ∧ β(v1, v2) = det

[
α(v1) α(v2)
β(v1) β(v2)

]
= α(v1)β(v2)− α(v2)β(v1)

Proposition 103 The wedge product of α ∧ β of two linear functions α, β ∈ V ⋆ =
∧1(V )⋆

is an alternating bilinear form, i.e. an element of
∧2(V )⋆
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Definition 104 Let V be a real vector space and α1, ..., αk be in V ⋆ =
∧1(V )⋆. The wedge

product of α1, ..., αk is the map

α1 ∧ · · · ∧ αk : V × · · · × V → R

defined by

α1 ∧ · · · ∧ αk(v1, ..., vk) = det

α1(v1) · · · α1(vk)
...

...
αk(v1) · · · αk(vk)


where v1, ..., vk are arbitrary vectors in V

Proposition 105 The wedge product α1 ∧ · · · ∧ αk of k linear functions α1, · · · , αk ∈ V ⋆ =∧1(V )⋆ is an alternating k linear form,i.e., an element of
∧k(V )⋆

Theorem 106 Let V be an n-dimensional real vector space and e1, ..., en be a basis of V .
Then wedge products

ej1 ∧ · · · ∧ ejk , 1 ≤ i1 < · · · < ik ≤ n

form a basis of
∧k(V )⋆ for 1 ≤ k ≤ n. In particular, dim(

∧k(V )⋆ = Cnk (binomial coefficient)

for 1 ≤ k ≤ n. For k > n,
∧k(V )⋆ has dimension zero

Definition 107 Let V be an n-dimensional real vector space and e1, ..., en basis of V . The
wedge product of ω ∈

∧k(V )⋆ and η ∈
∧l(V )⋆ is defined by

ω ∧ η =
∑

i1<···<ik
j1<···<jl

ωi1,...,ikηj1,...,jle
i1 ∧ · · · ∧ eik ∧ ej1 ∧ · · · ∧ ejl

where

ω =
∑

i1<···<ik

ωi1,...,ike
i1 ∧ · · · ∧ eik η =

∑
j1<···<jl

ηi1,...,ike
j1 ∧ · · · ∧ ejl

Remark: In other words, one defines the wedge product of basic k-forms ei1 ∧ · · · ∧ eik ∈∧k(V )⋆ and ej1 ∧ · · · ∧ ejl ∈
∧l(V )⋆ as

ei1 ∧ · · · ∧ eik ∧ ej1 ∧ · · · ∧ ejl ∈
∧k+l

(V )⋆

and then extends this definition to arbitrary ω ∈
∧k(V )⋆ and η ∈

∧l(V )⋆

Proposition 108 This defied wedge product is consistent with the wedge product of Linear
functions defined above and is independent of the choice of the basis e1, ..., en ∈ V ∼= Rn

Definition 109 Let V be a real vector space. The wedge product ω ∧ η of two alternating
forms ω ∈

∧k(V )⋆ and η ∈
∧l(V )⋆ is defined by

ω ∧ η(v1, ..., vk, vk+1, ..., vk+l) =
∑
σ

sign(σ)ω(v1, ..., vk)η(vk+1, ..., vk+l)

where σ = (i1, ..., ik+l is a permutation of {1, ..., k + l} such that i1 < · · · < ik and ik+1 <
· · · < ik+l
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Corollary 110 Let ω ∈
∧k(V )⋆, η ∈

∧l(V )⋆ and ϕ ∈
∧m(V )⋆. Then

• (ω ∧ η) ∧ ϕ = ω ∧ (η ∧ ϕ)

• ω ∧ η = (−1)kl(η ∧ ω)

• The wedge product is linear in each of its arguments, e.g.:

ω ∧ (cη) = c(ω ∧ η), for c ∈ R
ω ∧ (η + ϕ) = ω ∧ η + ω ∧ ϕ, in case l = m

11.2 Pull-Back

Definition 111 Let f : V → W be a linear map between real vector spaces V and W .
The pull-back of an alternating k-linear form ω ∈

∧k(W )⋆ is the alternating k-linear form
f⋆ω ∈

∧k(V )⋆ defined by the rule

f⋆ω(v1, ..., vk) = ω(f(v1), ..., f(vk))

where v1, ..., vk are arbitrary vectors in V

Proposition 112 Let f : V → W be a linear map between real vector spaces and let ω ∈∧k(W )⋆,η ∈
∧l(W )⋆. Then

• f⋆ω is an alternating k-linear form on V

• fstar :
∧k(W )⋆ →

∧k(V )⋆ is linear

• fstar(ω ∧ η) = f⋆ω ∧ f⋆η

Theorem 113 Let f : U → V and g : V → W be linear maps. Then (g ◦ f)⋆ = f⋆ ◦ g⋆ :∧k(W )⋆ →
∧k(U)⋆

Differential forms

Definition 114 Let U be an open subset on Rn. A function

ω : U × Rn × · · · × Rn︸ ︷︷ ︸
k factors

→ R, ω = ω(x, v), x ∈ U, v ∈ Rn

is called a differential k form if for all fixed x ∈ U , the function ω(x, ·) : Rn× · · ·×Rn → R
is k-linear and alternating.

A differential k-form ω is Cm-smooth (m ≤ ∞) when it is Cm smooth as a function ω :
U × Rn × · · · × Rn → R.

Proposition 115 Let ω : U×Rnk → R be a differential k-form on U . Then there are unique
functions

ωi1...ik : U → R, i1 < · · · < ik

such that
ω =

∑
i1<···<ik

ωi1...ik(x)Dx
i1 ∧ · · · ∧Dxik

The k-form ω is Cm iff all functions ωi1...ik are Cm

/faculty of Science and Engineering 21



Multivariable analysis /Zambelli Lorenzo University of Groningen

Remark: Differential forms ω naturally act on vector fields.

Definition 116 A differential k-form ω of class Cm on U ⊂ Rn is an alternating k-linear
over Cm(U) map

ω : Xm(U)× · · · × Xm(U) → Cm(U)

where Xm(U) is the space of all Cm-vector fields on U and Cm(U) is the space of all Cm-
smooth functions on U

Proposition 117 Let U ⊂ Rn be open. If ω : U × Rnk → R is a differential k-form (in the
sense of the first definition) of class Cm, then it induces an alternating k-linear over Cm(U)
map

ω̃ : Xm(U)× · · · × Xm(U) → Cm(U)

by setting ω̃(v1, ..., vk)(x) = ω(x, F1(x), ..., Fk(x)) where vi(x) = (x, Fi(x)). Conversely, every
such map ω̃ (differential k-form in the sense of the second definition) induces a Cm function

ω : U × Rn × · · · × Rn → R

such that ∀x ∈ U , ω(x, ·) is k-linear and alternating, by setting ω(x0, c1, ..., ck) = ω̃(v1, ..., vk)(x0),
where the vector fields vi(x) = (x, F (x)) are Cm on U and such that Fi(x) = ci in a small
neighbourhood of x0 ∈ U (here ci ∈ Rn are constant vectors)

11.3 Operations on differential forms

Definition 118 Let ω be a differential k-form on U2 ⊂ Rm and let f : U1 ⊂ Rn → U2 ⊂ Rm
be a C1 map. The pull-back of ω under f is the differential k-form f⋆ω on U1 defined by

f⋆ω(x, c1, ..., ck) = ω(f(x), Df |x(c1), ..., Df |x(ck))

meaning that at each x, we have the pull-back of alternating k-linear forms under linear map
df between the corresponding tangent spaces

Proposition 119 Let f : U1 ⊂ Rn → U2 ⊂ Rm be of class (at least) C1. The pull-back f⋆ is
a linear map. Moreover, it respects the wedge product: if ω and η are differential k-forms on
U2, then f

⋆(ω ∧ η) = f⋆ω ∧ f⋆η

Proposition 120 If f : U1 ⊂ Rn → U2 ⊂ Rm and g : U2 → U3 ⊂ Re are C1 maps, then
(g ◦ f)⋆ = f⋆ ◦ g⋆

11.3.1 Exterior derivative

Definition 121 Let ω be a differential k-form on U ⊂ Rn of class Cm, m ≥ 1. The exterior
derivative Dextω of ω is the differential (k + 1)-form on U defined by

Dextω =
∑

i1<...<ik

Dωi1...ik(x) ∧Dx
i1 ∧ · · · ∧Dxik

where
ω =

∑
i1<...<ik

ωi1...ik(x)Dx
i1 ∧ · · · ∧Dxik

is the unique expansion of ω with respect to the basis k-forms Dxi1 ∧ · · · ∧Dxik , i1 < ... < ik
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Proposition 122 The following properties of the exterior derivative Dext hold:

• ∀ differential k-forms ω and η of class C1 and ∀λ ∈ R, we have

Dext(λω + η) = λDextω +Dextη

i.e. Dext is linear

• ∀ diff. form ω and ∀ function f of class C1,

Dext(fω) = Df ∧ ω + fDextω

• ∀ diff. form ω and ∀ map F of class C2, we have

F ⋆(Dextω) = Dext(F ⋆ω)

• ∀ diff. form ω of class C2, Dext(Dextω) = 0

Remark: Note that for differential 0-forms of class C1, we have Dextf = Df . Therefore,
Dext is an extension of the usual notion of the derivative to differential forms. Also note that
unlike in the case of higher order derivatives Drf which might be non-zero for all r ∈ N we
have that Dext ◦Dext ≡ 0, because of skew-symmetry of differential forms.

Note: In what follows, when considering differential forms we will use d to refer to both
exterior derivative and 1-st differentials of functions. When talking about higher derivatives
of maps, D will be used instead.

Definition 123 A C1 differential k-form ω on U ⊂ Rn is called closed if dω ≡ 0 on U .

A C1 differential k-form ω on U ⊂ Rn is called exact if there exists a k − 1 form η on
U such that ω = dη

Proposition 124 Every exact differential k-form ω on U ⊂ Rn is closed

12 Vector Fields, differentials forms and the classical opera-
tions

Definition 125 Vector Fields A vector field on U ⊂ Rn is a map

v : U → U × Rn, v(x) = (x, F (x))

that assigns to each x ∈ U a vector F (x) ∈ Rn ”at x” (here F : U → Rn is some map). A
vector field v is Cm on U when v = (id, F ) : U → U × Rn (or equivalently F : U → Rn) is
Cm

Definition 126 A vector field on Rn is a map X : Rn → TRn, where TRn is the tangent
bundle of Rn (U ⊂ Rn × Rn), such that π ◦ X = idRn. In other words, X is of the form
X(p) = (p, v(p)). The vector field is Cm if the function v is Cm.
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Proposition 127 If v is a (Cm-smooth) vector field, then w = ⟨v, ·⟩ is a (Cm-smooth) one-
form

Definition 128 Let f : U ⊂ Rn → R be a differentiable function on U . The vector field v
on U such that

⟨v, ·⟩ = df

is called the gradient vector field of f and is denoted by grad f

Definition 129 Let v : U ⊂ Rn → U × Rn be a differentiable vector field on U . The
divergence of v is the function div(v) : U → R defined by

div(v)(x) = traceDF |x

where v = (x, F (x)) and DF is expressed in Euclidean coordinates. Note that writing

F = (f1(x
1, ..., xn), ..., fn(x

1, ..., xn))

we have div(v) =
∑n

i=1
∂fi
∂xi

Definition 130 Let f : U ⊂ Rn → R be a C2 function. The Laplacian ∆f : U → R is a
function on U given by

∆f = div(grad f)

In Euclidean coordinates, ∆f =
∑n

i=1
∂2fi
∂xi2

Definition 131 (Hodge star) Given a differential k-form ω ∈ Ωk(U), U ⊂ Rn, its Hodge
star is the (n− k)-form ⋆ω ∈ Ωn−k(U) defined by extending the assignment

⋆dxi1 ∧ · · · ∧ dxik = (−1)σdxj1 ∧ · · · ∧ dxjn−k

where i1 < · · · < ik,j1 < · · · < jn−k and σ(i1, ..., ik, j1, ..., jn−k) is the permutation of {1, ..., n}
by sky-linearity.

Remark: Note that for a k-form ω on U ⊂ Rn, ⋆ ⋆ ω = (−1)k(n−k)ω

Proposition 132 Let v be a differentiable vector field on U ⊂ Rn. Then the divergence of v
satisfies

div(v) = ⋆(d ⋆ ω), where ω = ⟨v, ·⟩

Proposition 133 Let f : U ⊂ Rn be a C2 function. Then

∆f = div(grad f) = ⋆d ⋆ f

Definition 134 (Rotational) Let v be a differentiable vector field on U ⊂ Rn. The rota-
tional of v is the (n− 2)-form rot(v) defined by

rot(v) = ⋆(dω), where ω = ⟨v, ·⟩

If n = 3, then rot(v) is a (3 − 2 = 1)-form, and hence there is a vector field, called the curl
of v and denoted by curl(v) such that

⟨curl(v), ·⟩ = rot(v) = ⋆(dω)
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Proposition 135 Consider R3 with Euclidean coordinates x, y, z and let v = (id, F ) : U ⊂
R3 → U × R3, where F = (f1, f2, f3), be a differentiable vector field on U . Then

curl(v) = ∇× F =

(
∂f3
∂y

− ∂f2
∂z

,
∂f1
∂z

− ∂f3
∂x

,
∂f2
∂x

− ∂f1
∂y

)
Remark: Let α1 = ⟨v1, ·⟩ and α2 = ⟨v2, ·⟩ be linear functions on R3 with standard inner

product then ⟨v1 × v2, ·⟩ = ⋆(α1 ∧ α2)

Proposition 136 Let f : U ⊂ Rn → R be a C2 function and v : U → U ×Rn be a C2 vector
field. Then

• rot(grad f) = 0

• curl(grad f) = 0 (n = 3)

• div(curl v) = 0 (n = 3)

13 Integration of differential forms

Definition 137 A subset Mk ⊂ Rn is a regular C∞-smooth k-dimensional surface in Rn if
for every point x ∈Mk there exists an open neighbourhood x ∈ U in Rn such that

Mk ∩ U = {(z, y) ∈ U | y = F (z)}

in a graph of a smooth map F : V ⊂ Rk → Rn−k, where z = (xi1 , ..., xik), y = (xj1 , ..., xjn−k)
with i1...ik, j1...jn−k all distinct

Definition 138 A regular level set Mc = {f = c} of a smooth function f : Rn → R,i.e., such
that grad f(x) ̸= 0 for every x ∈Mc, is a regular C∞-smooth (n− 1)-dimensional surface in
Rn, whenever Mc is non-empty. More generally,

Mc1,...,cn−k
= {x ∈ Rn|F (x) = (c1, ..., cn−k)} ≠ ∅

of a C∞-smooth map F : Rn → Rn−k, i.e., such that rankDF |x = n− k ∀x ∈Mc1,...,cn−k
, is

a regular C∞-smooth k-dim surface in Rn.

Definition 139 Let Mk be a regular C∞-smooth surface in Rn. A differential k-form on Mk

is a field of alternating k-linear functions

ω|x : TxM
k × · · · × TxM

k → R

where TxM
k = {v ∈ Rn|v = γ̇(0), with γ a C1 differential curve in Mk ⊂ Rn with γ(0) = x}

is the tangent space of Mk at x

Definition 140 A smooth regular k-dim. surfaceMk is called orientable if it admits a smooth
nowhere vanishing top (=of degree k) form
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Theorem 141 A compact regular C∞ smooth k-surface Mk in Rn is a finite union of Fi(Di)
where

Fi : Rk →Mk ⊂ Rn, Fi ∈ C∞(Rk)

is such that Fi is a C∞ diffeomorphism onto its image in Mk, Di ⊂ Rn is a k-dim compact
convex polyhedron and Fi(intDi) ∪ Fj(intDj) =, i ̸= j

Definition 142 Any C1 differentiable map F : D ⊂ Rk → Rn where D is a compact convex
k-dim. polyhedron in Rk, together with an orientation ± on D, is called k-dimensional cell.
If σ = (F,±D) is a k-dim cell and ω is a k-form on Rn, then∫

σ
ω =

∫
D
F ⋆ω = ±

∫
D
g(x)dx1...dxk

where F ⋆ω = g(x)dx1...dxk

Definition 143 A k-chain in Rn (or a regular smooth surface M e ⊂ Rn) is a finite formal
sum of the form

ck =
n∑
i=1

miσi

where mi ∈ Z and σi = (Fi,±Di) is a k-cell, take up to the natural equivalence relation:

m1σ +m2σ = (m1 +m2)σ, −σ = (F,−D)

The set of chains because an abelian group under the formal sum operation and we define the
integral of a differential k-form ω over a k-chain Ck as∫

Ck

ω =
n∑
i=1

mi

∫
σi

ω

where Ck =
∑n

i=1miσi

Proposition 144 Let D1 and D2 be two compact convex polyhedral in Rk and let

F : U → V, D1 ⊂ U ⊂ Rk, D2 ⊂ V ⊂ Rk

be a C1 smooth diffeomorphism sending D1 onto D2 and preserving the orientation on Rk.
Then for any (C0) k-form ω on D2 ∫

D1

F ⋆ω =

∫
D2

ω

Corollary 145 Let σ = (f,D) be a k-cell and ω a differential k-form in Rn. If F : Rk → Rk
is a C1 diffeomorphism, then ∫

F−1(σ)
F ⋆ω =

∫
σ
ω

where F−1(σ) = (f ◦ F, F−1(D)). Similarly, if Ck =
∑n

i=1miσi is a k-chain, then∫
F−1(Ck)

F ⋆ω =

∫
Ck

ω

where F−1(Ck) =
∑k

i=1miF
−1(σi)
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13.1 Stokes’s theorem

Definition 146 Let σ(F,D), F : D ⊂ Rk → Rn be a k-cell. The boundary ∂σ is defined by

∂σ =
∑
i

σk−1
i , σk−1

i = (F |Di , Di)

where Di are the faces of D oriented by the outward normal n⃗. The boundary ∂Ck of a k-chain
is defined by

∂Ck =

n∑
j=1

mj∂σj

Proposition 147 For a k-chain Ck, ∂∂Ck = 0

Theorem 148 (Stokes’s theorem) Let ω be a C1-smooth differential (k − 1)-form on Rn
(or on a compact regular orientable C∞-smooth surface M in Rn). Then for every k-chain
Ck in Rn (contained in M) ∫

Ck

dω =

∫
∂Ck

ω

Corollary 149 Let M be a compact regular orientable C∞-smooth k-surface in Rn with
boundary ∂M . Then for every C1-differentiable (k − 1)-form ω on M ,∫

M
dω =

∫
∂M

g∗(ω)

where g : ∂M →M denotes the inclusion map.

Definition 150 A subset Mk ⊂ Rn is a regular C∞-smooth k-dimensional surface with
boundary if for every point x ∈ Mk there exists an open neighbourhood U of x in Rn such
that

Mk ∩ U = {(z, y) ∈ U |y = F (z)}

is a graph of a smooth map F :W ⊂ Rk → Rn−k, where z = (xi1 , ..., xik), y = (xj1 , ..., xjn−k)
with i1, ..., ik, j1, ..., jn−k all distinct and W is either

• an open ball Br(z0) or

• a part of Br(z0) cut out by a C∞ function f :W = Br(z0) ∩ {f ≤ 1}

assuming {f = 1} is a regular level set for f on Rk

Corollary 151 (Green’s theorem) Let U ⊂ R2 be an open bounded subset in R2 with ∂U
a closed regular C∞-smooth curve. If ω is a C1-smooth 1−form on (a neighbourhood of) U ,
then ∫

M=U
dω =

∫
C=∂U

ω

which in coordinates (x, y) on R2 reads as∫
M

(
∂b

∂x
− ∂a

∂y

)
dx ∧ dy =

∫
C
a(x, y)dx+ b(x, y)dy

where ω = a(x, y)dx+ b(x, y)dy
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Corollary 152 (Divergence Theorem) Let U ⊂∈ R3 be an open bounded subset in R3

with ∂U a closed regular C∞-smooth 2-surface. Let v be a C1 vector field on (a neighbourhood
of) U . Then ∫

M=U
div(v) =

∫
S=∂U

iv(ω)

where ω = dx∧dy∧dz is the standard volume form on R3. In coordinates, if v has components
v1 = v1(x, y, z), v2 = v2(x, y, z), v3 = v3(x, y, z), the r.h.s∫

S=∂U
iv(ω) =

∫
S=∂U

v1dy ∧ dz + v2dz ∧ dx+ v3dx ∧ dy︸ ︷︷ ︸∫
S v·dn⃗ flux through S

Corollary 153 (Curl theorem) Let M2 ⊂ R3 be a compact regular oriented C∞-smooth
two-surface in R3 with boundary ∂M2. Let v be a C1 one-form in R3. Then∫

M2

curl(v) · dn⃗ =

∫
M2

⋆ rot(v) =

∫
∂M2

ω

where ω = ⟨v, ·⟩, with ⟨·, ·⟩ the standard inner product on R3

Corollary 154 (Gradient Theorem) Let σ = (γ, [a, b]), γ : [a, b] → Rn be a 1−cell in Rn
and let f : Rn → R be a C1-function. Then∫

σ
df = f(σ(b))− f(σ(a))

Theorem 155 (Brouwer’s fixed point theorem) Let Br(0) ⊂ Rn be a closed ball in Rn
around the origin and f : Br(0) → Br(0) be a C2-smooth map. Then exists at least one fixed
point x0 ∈ Br(0):

f(x0) = x0
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