Multivariable Analysis

Zambelli Lorenzo
BSc Applied Mathematics

November 2021-January 2022

1 Introduction

This notes are based on the material of the Lecture's notes and the course textbook.

2 Derivatives

Definition 1 Let $f: U \rightarrow \mathbb{R}^{m}$ be given where U is an open subset of \mathbb{R}^{n}. The function f is differentiable at $p \in U$ with derivative $(D f)_{p}=T$ if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear trasformation and

$$
f(p+v)=f(p)+T(v)+R(v) \Rightarrow \lim _{|v| \rightarrow 0} \frac{R(v)}{\|v\|}=0
$$

We say that the Taylor remainder R is subliear because it tends to 0 faster than $\|v\|$.
Remark: $D f$ is the total derivative or Frechet derivative and if the function is differentiable at U then the map $x \mapsto(D f)_{x}$ defines a function

$$
D f: U \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

where $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is the set of linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
Theorem 2 If f is differentiable at p then it unambiguosly determines $(D f)_{p}$ according to the limit fomrula, valid for all $u \in \mathbb{R}^{n}$,

$$
(D f)_{p}(u)=\lim _{t \rightarrow 0} \frac{f(p+t u)-f(p)}{t}
$$

Definition 3 If f is differentiable at p, then for all basis vector $e_{i} \in \mathbb{R}^{n}$ (orthonormal),

$$
\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{p}=\lim _{t \rightarrow 0} \frac{f_{i}\left(p+t e_{j}\right)-f_{i}(p)}{t}
$$

are the $i j^{\text {th }}$ partial derivative of f at p if the limit exists.
Definition 4 (Jacobian Matrix) If f is differentiable (in coordinates: $\left.f=f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)$, then

$$
(D f)_{p}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

where the rows of $\left.D f\right|_{p}$ are the transpose of the gradient of f_{i} at p for all $i \in\{1, \ldots, m\}$ $\left(\nabla^{T} f_{i}(p)\right)$

Corollary 5 If the total derivative exists then the partial derivatives exist and they are the entries of the matrix that represents the total derivative

Remark: Do not confuse the total derivative $\left.D f\right|_{p}$ with the direction derivatives of f at $p \in U$ which is the limit, if exists

$$
\nabla_{p} f(u)=(D f)_{p}(u)=\lim _{t \rightarrow 0} \frac{f(p+t u)-f(p)}{t}
$$

If the i, j-th partial derivatives of f at p exist for all $i \in\{1, \ldots, m\}$, then together they form the directional derivative of f in this specific e_{i} direction.

Remark: If f is differentiable, then

$$
\nabla_{p} f(u)=\nabla f(p) \cdot u=\frac{\partial f}{\partial x_{1}} u_{1}+\cdots+\frac{\partial f}{\partial x_{n}} u_{n}
$$

Proposition 6 Let \mathbb{R}^{n} and two norm $\|\cdot\|_{a},\|\cdot\|_{b}$, then

$$
\exists r_{1}, r_{2}>0 \quad \text { s.t. } \forall v \quad r_{1}\|v\|_{a} \leq\|v\|_{a} \leq r_{2}\|v\|_{b}
$$

Theorem 7 Differemtiability implies continuity
Theorem 8 If the partial derivatives of $f: U \rightarrow \mathbb{R}^{m}$ exist and are continuous then f is differentiable.

Theorem 9 Let f and g be differentiable. Then
(a) $D(f+c g)=D f+c D g$
(b) $D($ constant $)=0$ and $D(T(x))=T$ where T is a linear map.
(c) $D(g \circ f)=D g \circ D f$ Chain Rule
(d) $D(f g)=D f g+f D g$ Leibniz Rule

Theorem 10 A function $f: U \rightarrow \mathbb{R}^{m}$ is differentiable at $p \in U$ if and only if each of its components f_{i} is differentiable at p. Furthermore, the derivative of its $i^{\text {th }}$ component is the $i^{\text {th }}$ component of the derivative

Theorem 11 (Mean Value Theorem) If $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable on U and the segment $[p, q]$ is contained in U then

$$
\|f(q)-f(p)\| \leq M\|q-p\|
$$

where $M=\sup \left\{\left\|(D f)_{x}\right\|: x \in(p, q) \subset U\right\}$.
Theorem 12 (C^{1} Mean Value theorem) If $f: U \rightarrow \mathbb{R}^{m}$ is of class C^{1} (its derivative exists and is continuous) and if the segment $[p, q] \subset U$ then

$$
f(q)-f(p)=\int_{0}^{1}(D f)_{p+t(q-p)} d t(q-p)
$$

where the integral is the average derivative of f on the segment. Note that conversely it holds too.

Corollary 13 Assume that U is connected and open. If $f: U \rightarrow \mathbb{R}^{m}$ is differentiable and for each point $x \in U$ we have $(D f)_{x}=0$ then f constant.

3 Higher Derivatives

The derivative $D^{k} f \forall k \in \mathbb{N}$ is the same sort of thing that f, namely a function from a open subset of a vector space into another vector space.

Definition 14 Assume $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable in U, then f is second differentiable at $q \in U$ if $D f: U \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is differentiable at $q \in U$

Remark: The second derivative at p is a linear map from \mathbb{R}^{n} into \mathcal{L}. For each $v \in \mathbb{R}^{n}$, $\left(D^{2} f\right)_{p}(v)$ belongs to \mathcal{L} and therefore is a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ so $\left(D^{2} f\right)_{p}(v)(w)$ is bilinear and we write it as $\left(D^{2} f\right)_{p}(v, w)$. The higher derivatives are defined in the same way.

Remark: If f second-differentiable on U then $x \mapsto\left(D^{2} f\right)_{x}$ defines a map

$$
D^{2} f: U \rightarrow \mathcal{L}^{2}=\mathcal{L}\left(\mathbb{R}^{n}, \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)\right) \cong \mathcal{L}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

where \mathcal{L}^{2} is the vector space of bilinear maps $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
Remark: Let

$$
\|f(v)\|=\sup \left\{\frac{\|f\|\|v\|}{\|v\|}: v \in \mathbb{R}\right\}
$$

then

$$
\begin{aligned}
\|D f(v)\| & \leq\|D f\|\|v\| \\
\left\|D^{2} f(v)\right\| & \leq\left\|D^{2} f\right\|\|v\|^{2} \\
\left\|D^{k} f(v)\right\| & \leq\left\|D^{k} f\right\|\|v\|^{k} k \in \mathbb{N}
\end{aligned}
$$

Theorem 15 If $\left(D^{2} f\right)_{p}$ exists then $\left(D^{2} f_{k}\right)_{p}$ exists, the second partials at p exist, and

$$
\left(D^{2} f_{k}\right)_{p}\left(e_{i}, e_{j}\right)=\frac{\partial^{2} f_{k}(p)}{\partial x_{i} \partial x_{j}}
$$

Conversely, existence of the second partials implies existence of $\left(D^{2} f\right)_{p}$, provided that the second partials exist at all points $x \in U$ near p and are continuous at p

Theorem 16 If $\left(D^{2} f\right)_{p}$ exists then it is symmetric: for all $v, w \in \mathbb{R}^{n}$ we have

$$
\left(D^{2} f\right)_{p}(v, w)=\left(D^{2} f\right)_{p}(w, v)
$$

Corollary 17 Corresponding mixed second partials of a second-differentiable function are equal,

$$
\frac{\partial^{2} f_{k}(p)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f_{k}(p)}{\partial x_{j} \partial x_{i}}
$$

Corollary 18 If f is differentiable on $U, \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ exist on U and are continuous at p, then

$$
\frac{\partial^{2} f^{k}}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f^{k}}{\partial x_{j} \partial x_{i}} \quad \forall i, j, k
$$

Corollary 19 The $r^{\text {th }}$ derivative, if it exists, is symmetric: Permutation of the vectors v_{1}, \ldots, v_{r} does not effect the value of $\left(D^{r} f\right)_{p}\left(v_{1}, \ldots, v_{r}\right)$. Corresponding mixed higher-order partials are equal.

3.1 Smoothness class

Definition $20 f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is of class C^{k} on U if $f, D f, D^{2} f, \ldots, D^{k} f$ exist on U and $D^{k} f$ is continuous on U

Definition $21 f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is of class C^{∞} if $f \in C^{k} \forall k \in \mathbb{N}$
Corollary $22 f \in C^{k}$ (or C^{∞}) iff all partial derivatives up to order k (or for all partial derivatives) exist and are continuous.

Consider the set $C^{k}\left(U, \mathbb{R}^{m}\right)$ of C^{k} maps on U, for which the following norm is bounded

$$
\|f\|_{C^{k}}:=\max _{0 \leq i \leq k} \sup _{x \in U}\left\|\left.D^{i} f\right|_{x}\right\|
$$

Theorem $23\left(C^{k}\left(U, \mathbb{R}^{m}\right),\|\cdot\|_{C^{k}}\right)$ is a Banach space for all $k<\infty$. A sequence of functions $f_{n} \in C^{k}\left(U, \mathbb{R}^{m}\right)$ converges to $f \in C^{k}\left(U, \mathbb{R}^{m}\right)$ in $\|\cdot\|_{C^{k}}$ iff

$$
f_{n} \rightrightarrows f, \cdots, D^{k} f_{n} \rightrightarrows D^{k} f
$$

on U (uniform converges of f and its differentials up to order k)
Corollary $24\left(C^{k}-M\right.$ test) Let $f_{n} \in C^{k}\left(U, \mathbb{R}^{m}\right)$ be such that $\left\|f_{n}\right\|_{C^{k}} \leq a_{n}$, where $\sum_{n=1}^{\infty} a_{n}$ converges. Then $\sum_{n=1}^{\infty} f_{n}$ converges to a function $f \in C^{k}\left(U, \mathbb{R}^{m}\right)$. Moreover, for all $s \leq k$:

$$
D^{2} f=\sum_{n=1}^{\infty} D^{2} f_{n}
$$

term by term differentiable is valid for all $s \leq k$.

4 Taylor's theorem

Theorem 25 (Taylor's theorem) Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be of class C^{N} on U. Let $[p, p+v] \subset U$. then

$$
f(p+v)=f(p)+\left.\sum_{k=1}^{N-1} \frac{1}{k!} D^{k} f\right|_{p}(\underbrace{v \ldots v}_{k \text { times }})+R_{N-1}(f, v)
$$

where

$$
R_{N-1}(f, v)=\left.\int_{0}^{1} \frac{(1-t)^{N-1}}{(N-1)!} D^{N} f\right|_{p+t v}(v \ldots v) d t
$$

Remark: When $N=1$, we get the C^{1} mean value theorem
Corollary 26 Under the assumptions of the theorem,

$$
f(p+v)=f(p)+\left.\sum_{k=1}^{N-1} \frac{1}{k!} D^{k} f\right|_{p}(\underbrace{v \ldots v}_{k \text { times }})+o\left(\|v\|^{N}\right)
$$

where $o\left(\|v\|^{n}\right)=f(v) \Leftrightarrow f(v) /\|v\|^{n} \rightarrow 0$ as $\|v\|^{n} \rightarrow 0$
Remark: Let $x=v+p$ so that $v_{i}=(x-p)_{i}$. In two dimension with $x_{1}=x$ and $x_{2}=y$

$$
f(x)=f(p)+\frac{\partial f}{\partial x}(p)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(p)\left(y-y_{0}\right)+\cdots
$$

5 Flat vs Analytic functions

In the previous section we have discuss the Taylor expansion and we learn that given $f: U \subset$ $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ (for simplicity $m=1$) the Taylor's theorem holds up to any order. In general, the series doesn't have to converge. Moreover, if the series does converge, it doesn't have to converge to a given function.

Definition 27 When a function f have $\left.\forall k \in \mathbb{N} D^{k} f\right|_{0}=0$ and is smooth, then such f is called flat.

Definition 28 A function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (real) analytic if $\forall p_{0}=\left(x_{1}^{0} \ldots x_{n}^{0}\right) \in U$

$$
f=\sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{n}=0}^{\infty} c_{k_{1}, \cdots, k_{n}}\left(x_{1}-x_{1}^{0}\right)^{k_{1}} \cdots\left(x_{n}-x_{n}^{0}\right)^{k_{n}}
$$

convergent power series in a neighbourhood of p_{0}. Alternatively, a function f is (real) analytic on U if $f \in C^{\infty}$ on U and the Taylor series

$$
\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i_{1}, \cdots, i_{k}} \frac{\partial^{k} f}{\partial x_{i_{1}} \cdots \partial x_{i_{k}}}\left(x_{i_{1}}-x_{i_{1}}^{0}\right) \cdots\left(x_{i_{k}}-x_{i_{k}}^{0}\right)
$$

converges to f in a neighbourhood of $p_{0}=\left(x_{1}^{0} \ldots x_{n}^{0}\right)$ for all $p_{0} \in U$ (note that the series are local).

5.1 Relation with complex analysis

Definition $29 f: U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}$ is holomorphic if f is \mathbb{R} differentiable on $U \subset \mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ and $\frac{\partial f}{\partial \bar{z}_{j}}=0$ for all $j=1, \ldots, n$ where

$$
\begin{aligned}
\frac{\partial}{\partial z_{j}} & =\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right) \\
\frac{\partial}{\partial \overline{z_{j}}} & =\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)
\end{aligned}
$$

$z_{j}=x_{j}+i y_{j}$. This implies that $\left.D f\right|_{p}$ is complex linear at every $p \in U$.
Theorem $30 f$ is holomorphic on U iff near every point it can be represented by a convergent power series

Corollary 31 Holomorphic functions $F: \mathbb{C}^{n} \rightarrow \mathbb{C}$ restricted to \mathbb{R}^{n} are real-analytic ($\operatorname{Ref}\left(\operatorname{Re} z_{1} \ldots\right.$ Rez $\left.z_{n}\right)$ is real analytic). Conversely, a real analytic function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ admits (at least locally) a holomorphic extension

6 Find extrema of a function

Definition 32 Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. It is said to have a local minimum (resp., maximum) at $p_{0} \in U$ if \exists a small neighborhood $p_{0} \in V \subset U$ such that

$$
f(p) \geq f\left(p_{0}\right), \quad \text { resp. } f(p) \leq f\left(p_{0}\right)
$$

for all $p \in V . p_{0}$ is a strict local minimum (resp. maximum) if

$$
f(p)>f\left(p_{0}\right), \quad \text { resp. } f(p)<f\left(p_{0}\right)
$$

for all $p \in V \backslash\left\{p_{0}\right\}$.
Definition 33 Local minima and maxima are called extrema of a function
Proposition 34 Consider a function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. Assume that $\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{2}}$ exist at a point $p_{0} \in U$. If p_{0} is a local extremum of f, then

$$
\left.\frac{\partial f}{\partial x_{i}}\right|_{p_{0}}=0, i=1, \ldots, n
$$

Remark: Points where

$$
\nabla f=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

vanishes are called critical points. They don't have to be minima or maxima
Theorem 35 Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be of class C^{2} in a neighbourhood of $p_{0} \in U$ which is a critical point of $f\left(\left.\nabla f\right|_{p_{0}}=0\right)$. If the Hessian

$$
\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{p_{0}} \in \operatorname{Mat}(n \times n, \mathbb{R})
$$

is positive (resp., negative) definite, i.e. the eigenvalues are positive (resp. negative) then p_{0} is a local minimum (resp., maximum). If the eigenvalues are both positive and negative, then we have a saddle point. Instead, if the eigenvalues are 0 then we do not have enough information to tell.

Remark: To check positive/negative definiteness, one can use Sylvester's criterion from Linear algebra

7 Implicit function theorem

Definition 36 Two open subsets V_{1} and V_{2} of \mathbb{R}^{n} are called C^{k} (resp., C^{∞})-diffeomorphic if there exists a bijection $f: V_{1} \rightarrow v_{2}$ such that f and f^{-1} are of class C^{k} (resp., C^{∞}).

Remark: If f is a bijection and f and f^{-1} are C^{0}, then f is called a homeomorphism
Theorem 37 (Implicit Function Theorem) Let U be an open subset of $\mathbb{R}^{n} \times \mathbb{R}^{m}$ and $F=\left(f_{1}, \ldots, f_{m}\right): U \rightarrow \mathbb{R}^{m}$ be of class $C^{k}\left(C^{\infty}\right), k \geq 1$, on U. Consider the following equation

$$
F(x, y)=z_{0}
$$

where $z_{0} \in \mathbb{R}^{m}$. If there exists $\left(x_{0}, y_{0}\right) \in U$ with $F\left(x_{0}, y_{0}\right)=z_{0}$ and the $m \times m$ matrix

$$
B=\left.\frac{\partial f_{i}}{\partial y_{j}}\right|_{\left(x_{0}, y_{0}\right)}
$$

is invertible, then the equation admits a unique solution $y=g(x)$ near $\left(x_{0}, y_{0}\right)$. Furthermore, g is $C^{k}\left(C^{\infty}\right)$

Theorem 38 (Implicit Function Theorem 2) If the mapping $F: U \rightarrow \mathbb{R}^{n}$ defined in a neighborhood U of the point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{m+n}$ is such that

- $F \in C^{(p)}\left(U, \mathbb{R}^{n}\right), p \geq 1$
- $F\left(x_{0}, y_{0}\right)=0$
- $F_{y}^{\prime}\left(x_{0}, y_{0}\right)$ is an invertible matrix
then there exists am $(m+n)$ dimensional interval $I=I_{x}^{m} \times I_{y}^{n} \subset U$, where

$$
I_{x}^{m}=\left\{x \in \mathbb{R}^{m}| | x-x_{0} \mid<\alpha\right\} \quad I_{y}^{n}=\left\{y \in \mathbb{R}^{n}| | y-y_{0} \mid<\beta\right\}
$$

and a mapping $f \in C^{(p)}\left(I_{x}^{m}, I_{y}^{n}\right)$ such that

$$
F(x, y)=0 \Leftrightarrow y=f(x)
$$

for any point $(x, y) \in I_{x}^{m} \times I_{y}^{n}$ and

$$
f^{\prime}(x)=-\frac{F_{x}^{\prime}(x, f(x))}{F_{y}^{\prime}(x, f(x))}
$$

Theorem 39 If $h: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $C^{k}\left(C^{\infty}\right), k \geq 1$ and $\left.D h\right|_{x_{0}}$ is invertible, then h is a C^{k}-diffeomorphism near x_{0} : there exists a small open neighbourhood $x_{0} \in U_{1} \subset U$ such that $h: U_{1} \rightarrow U_{2}=h\left(U_{1}\right)$ is a C^{k}-diffeomorphism. In particular, U_{2} is open and $\left.h\right|_{U_{1}}$ is an open map (for any V an open subset pf U_{1}, the image $h(V)$ is open)

8 Banach Fixed point Theorem

Definition 40 (Lipschitz) A function f is Lipschitz in U w.r.t the variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and Lipschitz constant L if

$$
\|f(x)-f(y)\| \leq L\|x-y\|
$$

for all $x, y \in U$.
Similarly, f is said to be locally Lipschitz in U w.r.t. $x=\left(x_{1}, \ldots, x_{n}\right)$ if for every point $x_{0} \in U$ there exists a neighbourhood $x_{0} \in V \subset U$ such that

$$
\|f(x)-f(y)\| \leq L^{V}\|x-y\|
$$

on V. In other words, f is Lipschitz on V

Theorem 41 (Banach Fixed-point Theorem) Let (M, d) be a complete metric space. Let $f: M \rightarrow M$ be such that

$$
d(f(q), f(p)) \leq K d(q, p)
$$

for all $q, p \in M$, where $k<1$ is a constant not depending on q and $p \in M$. Then f has a unique fixed point $p_{0} \in M$, i.e.

$$
f\left(p_{0}\right)=p_{0} \quad f(p)=p \Rightarrow p=p_{0}
$$

9 Ordinary Differential equations

Definition 42 Let $t \in \mathbb{R}$ and $F: U \subset \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a function of $n+1$ variables. An ordinary differential equation $(O D E)$ of $n-t h$ order is an equation of the form

$$
F\left(t, x, x^{\prime}, x^{\prime \prime}, \ldots, x^{(n)}\right)=0
$$

where t is the independent variable, $x=x(t)$ is a function of t and $x^{\prime}, x^{\prime}, \cdots, x^{(n)}$ are its derivatives.
A function $x=x(t)$ is a solution of the $O D E$ if the substitution of $x(t), x^{\prime}(t), \ldots, x^{(n)}(t)$ into F makes the $O D E$ hold identically

Remark: The above equation is implicit and therefore the ODE is said to be in implicit form. An n-th order ODE is siad to be in explicit form if it can be written as follows

$$
x^{(n)}=f\left(t, x, x^{\prime}, \ldots, x^{(n-1)}\right)
$$

Definition 43 Let $t \in \mathbb{R}$ and $f_{i}: U \subset \mathbb{R}^{n+1} \rightarrow \mathbb{R}, i=1, \ldots n$, be functions of $n+1$ variables. A first order system of differentiable equations (in explicit form) is a set of n equations

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=f_{1}\left(t, x_{1}, \ldots, x_{n}\right) \\
\vdots \quad \vdots \\
x_{n}^{\prime}=f_{n}\left(t, x_{1}, \ldots, x_{n}\right)
\end{array}\right.
$$

Or, in more compact notation,

$$
x^{\prime}=F(t, x), \quad F: U \subset \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}
$$

A solution of this ODE is a vector function

$$
x=x(t)=\left(x_{1}(t) \cdots x_{n}(t)\right)
$$

that is differentiable on some interval $t \in(a, b) \subset \mathbb{R}$ and if substitution of $x=x(t)$ into the $x^{\prime}=F(t, x)$ makes the equality hold trivially.

Definition 44 (Initial value problem) Initial value problem (IVP) asks for solution of $x^{\prime}=F(t, x)$ that passes through a given point $\left(t_{0}, x_{0}\right) \in U \subset \mathbb{R}^{n+1}$, i.e. $x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$. The solution of the IVP is equivalent to the integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} F(t, x(t)) d t
$$

More precisely, assume $F \in C^{0}$ and let $x=x(t)$ be a solution, then

$$
x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} x^{\prime}(t) d t=x_{0}+\int_{t_{0}}^{t} F(t, x(t)) d t
$$

Conversely, if $x=x(t)$ is a continuous solution of

$$
x(t)=x_{0}+\int_{t_{0}}^{t} F(t, x(t)) d t
$$

Then, $x=x(t) \in C^{1}, x\left(t_{0}=x_{0}\right.$ and $x^{\prime}(t)=F(t, x(t))$.

9.1 Linear ODEs

Definition 45 A system of Linear ODEs is an explicit system of ODEs of the following form

$$
x^{\prime}=A(t) x+B(t)
$$

where A is a time dependent $n \times n$ matrix and $B(t) \in \mathbb{R}^{n}$ is a time dependent vector
Definition 46 A linear system is called homogeneous if $B(t)=0$, and otherwise it is called inhomogeneous

Definition 47 A linear system is said to have constant coefficients if $A(t)=A\left(t_{0}\right)$ and $B(t)=B\left(t_{0}\right)$, i.e. they do not depend on t

Theorem 48 Consider a linear system

$$
x^{\prime}=A(t) x
$$

where $A=A(t):(a, b) \subset \mathbb{R} \rightarrow \operatorname{Mat}(n \times n, \mathbb{R})$ is continuous. Then the set of solutions is a vector space isomorphic to \mathbb{R}^{n}.

Theorem 49 Consider a linear system $x^{\prime}=A(t) x+B(t)$, where $A=A(t):(a, c) \subset \mathbb{R} \rightarrow$ $\operatorname{Mat}(n \times n, \mathbb{R})$ and $B=B(t):(a, c) \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$ are C^{0}. Assume $x^{\text {inh }}=x^{\text {inh }}(t)$ is a solution of the inhomogeneous system and $x^{h}=x^{h}(t)$ is an arbitrary solution of the homogeneous sytem $x^{\prime}=A(t) x$. Then, $x=x^{h}(t)+x^{\text {inh }}(t)$ is a solution of $x^{\prime}=A(t) x+B(t)$

Remark: The difference between two solutions of the inhomogeneous system is a solution of the homogeneous one.

Proposition 50 Consider an IVP

$$
x^{\prime}=A x \quad x(0)=x_{0} \in \mathbb{R}^{n}
$$

where A has constant coefficients. Then it can be exactly solved and the solution has the form

$$
x(t)=e^{A t} x_{0}
$$

where $e^{A t}$ is the exponential of an $n \times n$ matrix At, defined by series

$$
\exp \{A t\}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} t^{k}
$$

Remark: To solve a particular ODE, it is helpful to use the Jordan decomposition of A. For more info look in the lecture notes of Linear system

Theorem 51 (Existence and uniqueness) Let $F=F(t, x): U \subset \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous on U and locally Lipschitz on U w.r.t $x=\left(x_{1}, \ldots, x_{n}\right)$. If $\left(t_{0}, x_{0}\right) \in U$, then the IVP

$$
\left\{\begin{array}{l}
x^{\prime}=F(t, x) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

has a unique solution, which can be extended to the boundary of U

Theorem 52 Let $F:(d, c) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous. Take a segment $[a, b] \subset[d, c]$ and assume that F is globally Lipschitz on $[a, b] \times \mathbb{R}^{n}$ w.r.t $x \in \mathbb{R}^{n}$. Then the IVP

$$
\left\{\begin{array}{l}
x^{\prime}=F(t, x) \\
x(a)=x_{0}
\end{array}\right.
$$

has a unique solution defined on $[a, b]$.
Corollary 53 Consider a linear system of 1 -st order ODEs $x^{\prime}=A(t) x+B(t)$, where $A:(d, c) \rightarrow \operatorname{Mat}(n \times n, \mathbb{R})$ and $B:(d, c) \rightarrow \mathbb{R}^{n}$ are continuous. Then the IVP, $x\left(t_{0}\right)=x_{0}$ where $t_{0} \in(d, c)$ has a unique solution on (d, c) for all initial conditions $x_{0} \in \mathbb{R}^{n}$

Theorem 54 (Peano existence theorem) If $F: U \subset \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous on U, then every IVP

$$
\left\{\begin{array}{l}
x^{\prime}=F(t, x) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

where $\left(t_{0}, x_{0}\right) \in U$ has a (possibly non-unique) solution.
Theorem 55 (Separations of variables for 1-d ODEs) Consider an ordinary differential equation of the form

$$
x^{\prime}=g(x) f(t)
$$

where $g: U \subset \mathbb{R} \rightarrow \mathbb{R}$ is C^{0} and non-zero on U and $f: V \subset \mathbb{R} \rightarrow \mathbb{R}$ is C^{0}. Then every initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}=g(x) f(t) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

where $\left(t_{0}, x_{0}\right) \in U \times V$. has a unique local solution, which can moreover be obtained by solving

$$
\int_{x_{0}}^{x} \frac{d x}{g(x)}=\int_{t_{0}}^{t} f(t) d t
$$

for x as a function of t
Definition 56 Any set of n linearly independent solutions $x_{1}(t), \ldots, x_{n}(t)$ is called a fundamental system of solutions; the matrix $X(t)$, where $X(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$, is also called a fundamental system or a fundamental matrix.

Remark: Any solution $x(t)$ of $x^{\prime}=A(t) x$ cen be written as

$$
x(t)=X(t)\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

where c_{i} are constant for all $i \in\{1, \ldots, n\}$.
Remark: Every fundamental matrix $X=X(t)$ solves the matrix equation

$$
X^{\prime}=A(t) X
$$

and that it can be written as

$$
X(t)=X^{E}(t) \cdot C
$$

where C is a constant and non-degenerate $n \times n$ matrix and $X^{E}(t)$ is the unique solution of matrix IVP

$$
\left(X^{E}\right)^{\prime}=A(t) X^{E}, \quad X^{E}\left(t_{0}\right)=E
$$

where E is the identity matrix.

Definition 57 Let $Y=Y(t)$ be a solution to the matrix equation $X^{\prime}=A(t) X$. The (timedependent) determinant of $Y(t)$ is called the Wronskian determinant or Wronskian of $Y(t)$.

Theorem 58 Let $A=A(t)$ be continuous and let $X=X(t)$ be a solution of the matrix equation $X^{\prime}=A(t) X$. Then $X(t)$ is a fundamental matrix iff the Wronskian $w(t)$ of $X(t)$ is non-zero. Moreover, $w(t)$ satisfies the differential equation

$$
w^{\prime}=(\operatorname{tr} A(t)) w
$$

where $\operatorname{tr} A(t)$ is the trace of $A(t)$. Hence,

- $w(t)=w\left(t_{0}\right) \exp \left\{\int_{t_{0}}^{t} \operatorname{tr}(A(s)) d s\right\}$
- $\operatorname{det}\left(X^{E}(t)\right)=\exp \left\{\int_{t_{0}}^{t} \operatorname{tr}(A(s)) d s\right\}$
where $X^{E}(t)$ solves $X^{\prime}=A(t) X, X\left(t_{0}\right)=E$.
In particular, $w(t)$ is either identically 0 or it is non-zero for every t

9.2 Variation of constant

Consider an inhomogeneous system

$$
x^{\prime}=A(t) x+B(t)
$$

where

$$
\begin{aligned}
& A:(c, d) \rightarrow M a t(n \times n, \mathbb{R}) \\
& B:(c, d) \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

are continuous. Let $X(t)$ be the fundamental matrix for the homogeneous equation $x^{\prime}=$ $A(t) x$. In the variation of constant method, the constants in

$$
X(t)=c=X(t)\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

which is the general solution to $x^{\prime}=A(t) x$, are varied.

Definition 59 Given the above inhomogeneous system and fundamental matrix, then

$$
c(t)=c\left(t_{0}\right)+\int_{t_{0}}^{t} X^{-1}(s) B(s) d s
$$

and the general solution of the inhomogeneous equation has thus the form

$$
X(t)\left(c\left(t_{0}\right)+\int_{t_{0}}^{t} X^{-1}(s) B(s) d s\right)
$$

Moreover, to solve the IVP (with $x\left(t_{0}\right)=x_{0}$) one takes $X(t)$ to be such that $X\left(t_{0}\right)=E$ and sets $c_{0}=x_{0}$.

9.3 Vector fields and their flows

Consider a system of $1-$ st order ODEs $x^{\prime}=F(x)$. Where $F=\left(f_{1} \ldots f_{n}\right): U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is of class C^{k}. The map F is also called a C^{k} vector field since it assigns to each point $x\left(x_{1} \ldots x_{n}\right)$ a vector $F(x) \in \mathbb{R}^{n}$.

Another represenation of a vector field is that of a map

$$
V: U \rightarrow U \times \mathbb{R}^{n}, \quad V(x)=(x, F(x))
$$

which assigns to every point $x \in U$ a vector $F(x) \in \mathbb{R}^{n}$ attached to x.
Remark: Geometrically a solution of the ODE $x^{\prime}=F(x)$ is a curve $x=x(t)$ that is tangent to the vector field at every point and, moreover, the magnitude and direction of $x^{\prime}(t)$ are equal to that of $F(x(t))$.

Remark: ODEs are sometimes written as $x^{\prime}=V(x)$, where V is a vector field (or $x^{\prime}=V(t, x)$ in time-dependent case).

Definition 60 When $F=F(x)(V=V(x))$ is independent of t, the $O D E x^{\prime}=F(x)$ is called autonomous

Definition 61 The flow of a (at least Lipschitz) vector field is a (locally defined) map

$$
g^{t}(x):(-\epsilon, \epsilon) \times U \rightarrow \mathbb{R}^{n}
$$

as follows: $g^{t}(x)$ is the unique (maximal) solution of $x^{\prime}=F(x)$ with $g^{0}(x)=x$.
Proposition 62 For an autonomous $O D E x^{\prime}=F(x)$ and $t, s \in \mathbb{R},|t|<\epsilon,|s|<\epsilon,|t+s|<\epsilon$, one has

$$
g^{t+s}(x)=g^{t}\left(g^{s}(x)\right)=g^{s}\left(g^{t}(x)\right)
$$

Corollary 63 Assume that solutions of $x^{\prime}=F(x)$ are defined for all $t \in \mathbb{R}$. Then the flow $g^{t}(x)$ defines a group homomorphism

$$
t \in \mathbb{R} \rightarrow g^{t}(\cdot)
$$

from \mathbb{R} into the group of maps from $U \subset \mathbb{R}^{n}$ to itself

Remark: if $F \in C^{k}$ then

$$
g^{t}(x):(-\epsilon, \epsilon) \times U \rightarrow U
$$

is of class at least C^{k-1}
Theorem 64 Consider a C^{∞} vector field $V(x)$ on $U \subset \mathbb{R}^{n}$. Assume that all solutions of $x^{\prime}=V(x)$ are defined for all times $t \in \mathbb{R}^{n}$. Then the flow g^{t} of V

$$
g^{t}(x): \mathbb{R} \times U \rightarrow U
$$

is C^{∞} smooth. Moreover, for each fixed t_{0}, the map

$$
g^{t_{0}}(\cdot): U \rightarrow U
$$

is a C^{∞} diffeomorphism.

10 Multiple integrals

Definition 65 Let $f: I^{n}=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ be a real-valued function. Consider a partition

$$
P_{i}: a_{i}=x_{0}^{i}<x_{1}^{i}<\cdots<x_{k_{i}}^{i}=b_{i}
$$

of each segment $\left[a_{i}, b_{i}\right]$ and the resulting partition of the box I^{n} by smaller boxes $I_{i_{1}, \ldots, i_{n}}^{n}$,

$$
I_{i_{1}, \ldots, i_{n}}^{n}=\left[x_{i_{1}}^{1}, x_{i_{1}+1}^{1}\right] \times \cdots \times\left[x_{i_{n}}^{n}, x_{i_{n}+1}^{n}\right]
$$

Then, a Rieman Sum is a sum of the form

$$
R(f, P, S)=\sum_{i_{1}=0}^{k_{1}-1} \cdots \sum_{i_{n}=0}^{k_{n}-1} f\left(S_{i_{1}, \ldots, i_{n}}\right)\left|I_{i_{1}, \ldots, i_{n}}^{n}\right|
$$

where $S_{i_{1}, \ldots, i_{n}} \in I_{i_{1}, \ldots, i_{n}}^{n}$ are sample points and $\left|I_{i_{1}, \ldots, i_{n}}^{n}\right|$ is the volume of $I_{i_{1}, \ldots, i_{n}}^{n}$, i.e. the product o fthe lengths of its sides:

$$
\left|x_{i_{1}+1}^{1}-x_{i_{1}}^{1}\right| \times \cdots \times\left|x_{i_{n}+1}^{n}-x_{i_{n}}^{n}\right|
$$

Definition 66 A function $f: I^{n}=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right] \rightarrow \mathbb{R}$ is called Rieamann-integrable on I^{n} with integral

$$
J=\int \underset{I^{n}}{ } \cdots f(x) d x^{1} \cdots d x^{n}
$$

if $\forall \epsilon>0 \exists \delta>0$ such that for all partitions P of I^{n} consisting of boxes $I_{i_{1}, \ldots, i_{n}}^{n}$ with diameter $d\left(I_{i_{1}, \ldots, i_{n}}^{n}\right)$ less than δ and any choice of sample points $S_{i_{1}, \ldots, i_{n}}, S_{i_{1}, \ldots, i_{n}} \in I_{i_{1}, \ldots, i_{n}}^{n}$, for the corresponding Riemann sum

$$
|J-R(f, P, S)|<\epsilon
$$

In other words, f is Riemann integrable when the following limit exists

$$
J:=\lim _{d(p) \rightarrow 0} R(f, P, S)
$$

where the limit is taken along all marked partitions (P, S) with the diameter $d(p):=\underset{i_{1}, \ldots, i_{n}}{\max } d\left(I_{i_{1}, \ldots, i_{n}}^{n}\right)$ tending to zero.

Proposition 67 If $f: I^{n} \rightarrow \mathbb{R}$ is Riemann-integrable, then it is bounded.
Definition 68 Consider a function $f: I^{n} \rightarrow \mathbb{R}$ and let P be a partition of I^{n}. Set

$$
m_{i_{1}, \ldots, i_{n}}:=\inf _{x \in I_{i_{1}}^{n}, \ldots, i_{n}} f(x) \quad M_{i_{1}, \ldots, i_{n}}:=\sup _{x \in I_{i_{1}, \ldots, i_{n}}^{n}} f(x)
$$

The sums

$$
\begin{aligned}
& r(f, P)=\sum_{i_{1}=0}^{k_{1}-1} \cdots \sum_{i_{n}=0}^{k_{n}-1} m_{i_{1}, \ldots, i_{n}}\left|I_{i_{1}, \ldots, i_{n}}^{n}\right| \\
& R(f, P)=\sum_{i_{1}=0}^{k_{1}-1} \cdots \sum_{i_{n}=0}^{k_{n}-1} M_{i_{1}, \ldots, i_{n}}\left|I_{i_{1}, \ldots, i_{n}}^{n}\right|
\end{aligned}
$$

are called, respectively, Lower and Upper Darboux sums of f relative to P
Definition 69 Consider a function $f: I^{n} \rightarrow \mathbb{R}$ and let P be a partition of I^{n}. Then, the quantaties

$$
\begin{aligned}
& \int_{-I^{n}} f d x^{1} \cdots d x^{n}:=\sup _{P} r(f, P) \\
& \int_{I^{n}} f d x^{1} \cdots d x^{n}:=\inf _{P} R(f, P)
\end{aligned}
$$

are called, respectively, Lower and Upper integrals of f on I^{n}.
Remark: Note that the $\sup _{P}(\underset{P}{\inf })$ is taken with respect to all partitions P of I^{n}
Lemma 70 For all marked partitions (P, S), we have

- $r(f, P) \leq R(f, P, S) \leq R(f, P)$
- $r(f, P) \leq \int_{-I^{n}} f d x \leq \bar{\int}_{I^{n}} f d x \leq R(f, P)$

Theorem 71 (Darboux's criterion of Riemann integrability) A function $f: I^{n} \rightarrow \mathbb{R}$ is Riemann integrable iff f is bounded and the lower and upper integrals coincide

$$
\int_{I^{n}}^{-} f d x=\int_{-I^{n}} f d x
$$

Remark: For a bounded function, the lower and upper integrals of f always exist. This follows from the above lemma ii.

Definition 72 (zero set) A subset $Z \subset \mathbb{R}^{n}$ is a zero set (or of Lebesgue measure zero) if $\forall \epsilon>0$ there exists a countable covering of Z by (open or equivalently closed) boxes I_{j}^{n} such that

$$
\sum_{j}\left|I_{j}^{n}\right|<\epsilon
$$

Proposition 73 Let $Z \subset \mathbb{R}^{n}$ be a zero set. Then $W \subset Z$ is also a zero set and a countable union of zero sets is again a zero set

Theorem 74 (Riemann-Lebesgue theorem/Lebesgue's criterion) A function $f: I^{n} \rightarrow$ \mathbb{R} is riemann integrable iff it is bounded and continuous almost everywhere on I^{n},i.e., there exists a zero set $Z \subset I^{n}$ such that f is continuous on $I^{n} \backslash Z$

Definition 75 Let E be a bounded subset of \mathbb{R}^{n} and χ_{E} be the indicator function (takes value 1 if $x \in E$ and 0 otherwise). A function $f: E \rightarrow \mathbb{R}$ is Riemann integrable on E if the function $f \cdot \chi_{E}(x)$ is Riemann integrable on some box I^{n} containing E. The integral of f over E is then defined by

$$
\int_{E} f d x:=\int_{E \subset I^{n}} f \cdot \chi_{E} d x
$$

Proposition 76 If I_{1}^{n} and I_{2}^{n} contain E, then $\int_{E \subset I_{1}^{n}} f \cdot \chi_{E} d x$ and $\int_{E \subset I_{2}^{n}} f \cdot \chi_{E} d x$ either both exist and are equal or both do not exist.

Theorem 77 Let $E \subset \mathbb{R}^{n}$ be a bounded subset of \mathbb{R}^{n} such that the boundary is a zero set. Then a function $f: E \rightarrow \mathbb{R}$ is Riemann integrable iff f is continuous almost everywhere (i.e. f continuous outside a zero set $\left.Z \subset E \subset \mathbb{R}^{n}\right)$.

Moreover, if E is bounded and ∂E is not a zero set, then χ_{E} is not Riemann integrable on E.

Definition 78 A volume of $E \subset \mathbb{R}^{n}$ (if exists) is the Riemann integral

$$
\int_{E} 1 \cdot d x^{1} \cdots d x^{n}
$$

Theorem 79 (Change of variables formula) Let $\psi: U \rightarrow W$ be a C^{1}-diffeomorphism between subsets U and W of \mathbb{R}^{n}. Let E be a bounded subset of \mathbb{R}^{n} such that $\bar{E} \subset W$. If f is Riemann integrable on E, then $g:=(f \circ \psi) \cdot|\operatorname{det}(D \psi)|$ is Riemann integrable on $\psi^{-1}(E)$ and

$$
\int_{\psi^{-1}(E)}(f \circ \psi) \cdot|\operatorname{det}(D \psi)| d x=\int_{E} f d y, \quad y=\psi(x)
$$

Theorem 80 (Fubini's theorem) Assume that $E_{1} \subset \mathbb{R}^{k}$ and $E_{2} \subset \mathbb{R}^{m}$ are bounded and let $f: E_{1} \times E_{2} \rightarrow \mathbb{R}$ be Riemann integrable. Then both $\int_{-E_{1}} f(x, y) d x$ and $\bar{\int}_{E_{1}} f(x, y) d x$ exists and integral on E_{2} with respect to y, then

$$
\int_{E_{2}}\left(\int_{-E_{1}} f(x, y) d x\right) d y=\int_{E_{2}}\left(\int_{E_{1}}^{-} f(x, y) d x\right) d y=\int_{E_{1} \times E_{2}} \int_{0} f(x, y) d x d y
$$

where $x=\left(x^{1}, \ldots, x^{k}\right)$ and $y=\left(x^{k+1}, \ldots, x^{k+m}\right)$.

Corollary 81 Assume that $E_{1} \subset \mathbb{R}^{k}$ and $E_{2} \subset \mathbb{R}^{m}$ are bounded and let $f: E_{1} \times E_{2} \rightarrow \mathbb{R}$ be Riemann integrable. Then

$$
\left.\int_{E_{1} \times E_{2}} \int_{E_{2}} f(x, y) d x d y=\int_{-E_{1}} f(x, y) d x\right) d y=\int_{E_{1}}\left(\int_{-E_{2}} f(x, y) d y\right) d x
$$

Corollary 82 Under preceding assumption $\int_{E_{1}} f(x, y) d x$ exists for almost all y. Similarly, $\int_{E_{2}} f(x, y) d y$ exists for almost all x

Corollary 83 If $f: I_{1}^{k} \times I_{2}^{m} \rightarrow \mathbb{R}$ and f is continuous, then the iterated integrals exist and are equal to each other.

Corollary 84 Assume $D \subset \mathbb{R}^{n-1}$ bounded, let $\psi_{1}, \psi_{2}: D \rightarrow \mathbb{R}$ and

$$
E=\left\{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid x \in D \psi_{1}(x) \leq y \leq \psi_{2}(x)\right\}
$$

and is bounded. If $f: E \rightarrow \mathbb{R}$ is integrable then

$$
\int_{E} f(x, y) d x d y=\int_{D} \int_{\psi_{1}}^{\psi_{2}} f(x, y) d y d x
$$

Corollary 85 (Cavalieri's principle) Let $E \subset \mathbb{R}^{n-1}$ be bounded and let ∂E be a zero set. Then

$$
\operatorname{Vol}(E)=\int_{E} d x^{1} \cdots d x^{n-1} d y=\int_{I_{y}^{1}} \operatorname{Vol}\left(E_{y}\right) d y
$$

where $E \subset I_{x}^{n-1} \times I_{y}^{1}, E_{y_{0}}=\left\{(x, y) \in E \mid y=y_{0}\right\}$ is a y-slice of E and $\operatorname{Vol}\left(E_{y_{0}}\right)$ is its $(n-1)$-volume; more precisely, any number between $\int_{-E_{y_{0}}} 1 \cdot d x$ and $\int_{E_{y_{0}}} 1 \cdot d x$

Remark: Note that by corollary, $\int_{I_{x}^{n-1}} \chi_{E_{y}} d x$ exists almost everywhere, so $\operatorname{Vol}\left(E_{y}\right)$ is well defined almost everywhere and also ∂E_{y} is a zero set in \mathbb{R}^{n-1} for almost all y

Remark: The notion of the volume: $\operatorname{Vol}(E)=\int_{E} 1 \cdot d x$, as follows from the Riemann Lebesgue theorem, is well defined precisely for those bounded sets E, for which ∂E is a zero set. Note also that it is invariant under Euclidean isometries by the change of variables formula

10.1 Improper Integrals

Definition 86 Let $E=\bigcup_{j=1}^{\infty} E_{j}$, where $E_{j} \subset E_{j+1} \subset \mathbb{R}^{n}$, each E_{j} is bounded and for each $j, \partial E_{j}$ is a zero set. Assume that $f: E \rightarrow \mathbb{R}$ is integrable on E_{j} for all j and

$$
J=\lim _{j \rightarrow \infty} \int_{E_{j}} f d x
$$

exists and doesn't depend on E_{j}, then J is the improper integral of f on E (the same notation $\int_{E} f d x=J$ is used)

Proposition 87 If $E=\bigcup_{j=1}^{\infty} E_{j}$, where $E_{j} \subset E_{j+1} \subset \mathbb{R}^{n}$, each E_{j} is bounded and for each $j, \partial E_{j}$ is a zero set, and E is also bounded with ∂E a zero set, then

- $\lim _{j \rightarrow \infty} \operatorname{Vol}\left(E_{j}\right)=\operatorname{Vol}(E)$
- For every integrable function $f: E \rightarrow \mathbb{R}$, its restriction to E_{j} is also integrable and

$$
\lim _{j \rightarrow \infty} \int_{E_{j}} f d x=\int_{E} f d x
$$

Remark: This proposition shows that improper Riemann integrals generalise Riemann integrals

Proposition 88 If $f, g: E \rightarrow \mathbb{R}$ are both integrable on E_{j} (E_{j} bounded and ∂E_{j} a zero set), $|f| \leq g$ on E and $\lim _{j \rightarrow \infty} \int_{E_{j}} g d x$ exists, then

$$
\int_{E} g d x, \quad \int_{E}|f| d x, \quad \int_{E} f d x
$$

exist
Definition 89 Assume that for all $y \in[c, d) \subset \mathbb{R}$, the following improper integral exists:

$$
F(y)=\int_{a}^{b} f(x, y) d x
$$

where $[a, b) \subset \mathbb{R}$ and b is possibly $+\infty$. It is assumed that on each segment $[a, c] \subset[a, b)$, a proper Riemann integral exists.

The improper integral converges uniformly on $[e, d)$ if $\forall \epsilon>0$ there exist a neighbourhood of the form $\left(b_{0}, b\right)$ (or $\left(b_{0},+\infty\right)$ where $\left.b=+\infty\right)$ such that $\forall c$ in this neighbourhood and $\forall y \in[e, d)$

$$
\left|\int_{c}^{b} f(x, y) d x\right|<\epsilon
$$

Theorem 90 Assume that $f=f(x, y)$ and $g=g(x, y)$, defined on $[a, b) \times[c, d)$ are integrable $w . r . t x$ on all $[a, e) \subset[a, b)$ for all $y \in[c, d)$. If $|f(x, y)| \leq g(x, y)$ and $\int_{a}^{b} g(x, y) d x$ converges uniformly on $[c, d)$, then so does the integral $\int_{a}^{b} f(x, y) d y$ (in particular, it is well defined $\forall y \in[c, d)$)

Theorem 91 If $f:[a, b) \times[c, d)$ is continuous, the integrals

$$
\int_{a}^{b} f(x, y) d x \quad \text { and } \quad \int_{c}^{d} f(x, y) d y
$$

converge uniformly w.r.t y on all $[c, e) \subset[c, d)$ and w.r.t x on all $[a, r) \subset[a, b)$, respectively, and there exists at least one iterated integral

$$
\int_{c}^{d} \int_{a}^{b}|f| d x d y \quad \text { or } \quad \int_{a}^{b} \int_{c}^{d}|f| d y d x
$$

then

$$
\int_{c}^{d} \int_{a}^{b} f d x d y=\int_{a}^{b} \int_{c}^{d} f d y d x
$$

Theorem 92 If $f=f(x, y):[a, b) \times[c, d] \rightarrow \mathbb{R}$ and its partial derivative with respect to y are continuous, the integral

$$
\int_{a}^{b} f_{y}^{\prime}(x, y) d x
$$

converges uniformly on $[c, d]$ and $\int_{a}^{b} f(x, y) d x$ converges for at least one y in $[c, d]$, then $\int_{a}^{b} f(x, y) d y$ converges uniformly and

$$
\frac{\partial}{\partial y} \int_{a}^{b} f d x=\int_{a}^{b} f_{y}^{\prime} d x
$$

Corollary 93 Let $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$. Assume $f \in C^{0}$ and $\frac{\partial f}{\partial y}$ exists and is C^{0}. Then

$$
\int_{a}^{b} f(x, y) d x \in C^{1}(y)
$$

and

$$
\frac{\partial}{\partial y} \int_{a}^{b} f(x, y) d x=\int_{a}^{b} \frac{\partial}{\partial y} f(x, y) d x
$$

11 Alternating k-linear forms

Definition 94 Given a vector space V over a field \mathbb{K}, its dual V^{\star} is defied as

$$
V^{\star}=\mathcal{L}(V, \mathbb{K})
$$

the space of linear functions from V to \mathbb{K}
Remark: V^{\star} is itself a vector space over \mathbb{K}.
Definition 95 Let V be finite-dimensional (and hence isomorphic to $\mathbb{K}^{n}, n<\infty$) and $e_{1}, \ldots, e_{n} \in V$ be a basis of V. The dual basis of e_{1}, \ldots, e_{n} is the basis

$$
e^{1}, \ldots, e^{n} \in V^{\star}
$$

of V^{\star} defined by the rule $e^{i}\left(e_{j}\right)=\delta_{j}^{i} \forall i, j \leq n$
Remark: δ_{j}^{i} is known to be the Kronecker delta and is equal to 1 when $j=i$ and 0 otherwise.

Proposition 96 Let e_{1}, \ldots, e_{n} be a basis of V. Then the dual basis e^{1}, \ldots, e^{n} is indeed a basis of V^{\star}. Moreover,

1. $v=\sum_{i=1}^{n} v^{i} e_{i} \Rightarrow v=\sum_{i=1}^{n} e^{i}(v) e_{i}$
2. for any $f \in V^{\star}, f=\sum_{i=1}^{n} f\left(e_{i}\right) e^{i}$

Definition 97 Elements of $V^{\star}=\mathcal{L}(V, \mathbb{K})$ are called Linear functions or linear 1-forms or covectors

Definition 98 Given two vectors spaces V_{1} and V_{2} over a field \mathbb{K}, a function

$$
\omega: V_{1} \times V_{2} \rightarrow \mathbb{K}
$$

is called bilinear or a bilinear form if it is linear in each argument, that is, if

$$
\begin{aligned}
\omega(\lambda v+u, s) & =\lambda \omega(v, s)+\omega(u, s) \\
\omega(v, \lambda s+r) & =\omega(v, s)+\lambda \omega(v, r)
\end{aligned}
$$

for all $v, u \in V_{1} ; s, r \in V_{2}$, and $\lambda \in \mathbb{K}$. The vector space of all bilinear maps $w: V_{1} \times V_{2} \rightarrow \mathbb{K}$ is denoted by $\mathcal{L}\left(V_{1} \times V_{2}, \mathbb{K}\right)$

Remark: Recall that the space $\mathcal{L}\left(V_{1} \times V_{2}, \mathbb{K}\right)$ is isomorphic to the space $\mathcal{L}\left(V_{1} \mathcal{L}\left(V_{2}, \mathbb{K}\right)\right)$.

Definition 99 Given vectors spaces V_{1}, \ldots, V_{k} over \mathbb{K}, a function $\omega: V_{1} \times \cdots \times V_{k} \rightarrow \mathbb{K}$ is called \boldsymbol{k}-linear or a k-linear form if it is linear in each argument, i.e., if $\forall i, 1 \leq i \leq k$ and $\forall v_{j} \in V_{j} j \neq i$

$$
\omega\left(v_{1}, \ldots, v_{i-1}, \cdot, v_{i+1}, \ldots, v_{k}\right): V_{i} \rightarrow \mathbb{K}
$$

is linear. The space of k-linear maps is denoted by $\mathcal{L}\left(V_{1} \times \cdots \times V_{k}, \mathbb{K}\right) \equiv \mathcal{L}\left(V_{1}, \mathcal{L}\left(V_{2}, \cdots \mathcal{L}\left(V_{k}, \mathbb{K}\right) \cdots\right)\right)$
remark: More generally, one can consider k-linear maps with values in another vector space, rather than the field \mathbb{K}.

Definition 100 Let V be a real vector space. A k-linear map $\omega: V \times \cdots \times V \rightarrow \mathbb{R}$ is called alternating if for every permutation σ of $\{1, \ldots, k\}$ and every choice of $v_{1}, \ldots, v_{k} \in V$, we have

$$
\omega\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)=\operatorname{sign}(\sigma) \omega\left(v_{1}, \ldots, v_{k}\right)
$$

The space of k-linear alternating maps $\omega: V \times \cdots \times V \rightarrow \mathbb{R}$ is denoted by $\bigwedge^{k}(V)^{\star}$.
Theorem 101 The space $\bigwedge^{k}(V)^{\star}$ is a vector space

11.1 Wedge product

Definition 102 Let V be a real vector space and α, β be two linear functions on V (i.e. elements of $\left.V^{\star}=\mathcal{L}(V, \mathbb{R})\right)$. The wedge product of α and β is the map

$$
\alpha \wedge \beta: V \times V \rightarrow \mathbb{R}
$$

defined by

$$
\alpha \wedge \beta\left(v_{1}, v_{2}\right)=\operatorname{det}\left[\begin{array}{ll}
\alpha\left(v_{1}\right) & \alpha\left(v_{2}\right) \\
\beta\left(v_{1}\right) & \beta\left(v_{2}\right)
\end{array}\right]=\alpha\left(v_{1}\right) \beta\left(v_{2}\right)-\alpha\left(v_{2}\right) \beta\left(v_{1}\right)
$$

Proposition 103 The wedge product of $\alpha \wedge \beta$ of two linear functions $\alpha, \beta \in V^{\star}=\Lambda^{1}(V)^{\star}$ is an alternating bilinear form, i.e. an element of $\bigwedge^{2}(V)^{\star}$

Definition 104 Let V be a real vector space and $\alpha_{1}, \ldots, \alpha_{k}$ be in $V^{\star}=\Lambda^{1}(V)^{\star}$. The wedge product of $\alpha_{1}, \ldots, \alpha_{k}$ is the map

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}: V \times \cdots \times V \rightarrow \mathbb{R}
$$

defined by

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left[\begin{array}{ccc}
\alpha_{1}\left(v_{1}\right) & \cdots & \alpha_{1}\left(v_{k}\right) \\
\vdots & & \vdots \\
\alpha_{k}\left(v_{1}\right) & \cdots & \alpha_{k}\left(v_{k}\right)
\end{array}\right]
$$

where v_{1}, \ldots, v_{k} are arbitrary vectors in V
Proposition 105 The wedge product $\alpha_{1} \wedge \cdots \wedge \alpha_{k}$ of k linear functions $\alpha_{1}, \cdots, \alpha_{k} \in V^{\star}=$ $\bigwedge^{1}(V)^{\star}$ is an alternating k linear form,i.e., an element of $\bigwedge^{k}(V)^{\star}$

Theorem 106 Let V be an n-dimensional real vector space and e_{1}, \ldots, e_{n} be a basis of V. Then wedge products

$$
e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}, \quad 1 \leq i_{1}<\cdots<i_{k} \leq n
$$

form a basis of $\bigwedge^{k}(V)^{\star}$ for $1 \leq k \leq n$. In particular, $\operatorname{dim}\left(\bigwedge^{k}(V)^{\star}=C_{k}^{n}\right.$ (binomial coefficient) for $1 \leq k \leq n$. For $k>n, \bigwedge^{k}(V)^{\star}$ has dimension zero

Definition 107 Let V be an n-dimensional real vector space and e_{1}, \ldots, e_{n} basis of V. The wedge product of $\omega \in \bigwedge^{k}(V)^{\star}$ and $\eta \in \bigwedge^{l}(V)^{\star}$ is defined by

$$
\omega \wedge \eta=\sum_{\substack{i_{1}<\cdots<i_{k} \\ j_{1}<\cdots<j_{l}}} \omega_{i_{1}, \ldots, i_{k}} \eta_{j_{1}, \ldots, j_{l}} \ell^{i_{1}} \wedge \cdots \wedge e^{i_{k}} \wedge e^{j_{1}} \wedge \cdots \wedge e^{j_{l}}
$$

where

$$
\omega=\sum_{i_{1}<\cdots<i_{k}} \omega_{i_{1}, \ldots, i_{k}} e^{i_{1}} \wedge \cdots \wedge e^{i_{k}} \quad \eta=\sum_{j_{1}<\cdots<j_{l}} \eta_{i_{1}, \ldots, i_{k}} e^{j_{1}} \wedge \cdots \wedge e^{j_{l}}
$$

Remark: In other words, one defines the wedge product of basic k-forms $e^{i_{1}} \wedge \cdots \wedge e^{i_{k}} \in$ $\bigwedge^{k}(V)^{\star}$ and $e^{j_{1}} \wedge \cdots \wedge e^{j_{l}} \in \bigwedge^{l}(V)^{\star}$ as

$$
e^{i_{1}} \wedge \cdots \wedge e^{i_{k}} \wedge e^{j_{1}} \wedge \cdots \wedge e^{j_{l}} \in \bigwedge^{k+l}(V)^{\star}
$$

and then extends this definition to arbitrary $\omega \in \bigwedge^{k}(V)^{\star}$ and $\eta \in \bigwedge^{l}(V)^{\star}$
Proposition 108 This defied wedge product is consistent with the wedge product of Linear functions defined above and is independent of the choice of the basis $e_{1}, \ldots, e_{n} \in V \cong \mathbb{R}^{n}$

Definition 109 Let V be a real vector space. The wedge product $\omega \wedge \eta$ of two alternating forms $\omega \in \bigwedge^{k}(V)^{\star}$ and $\eta \in \bigwedge^{l}(V)^{\star}$ is defined by

$$
\omega \wedge \eta\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+l}\right)=\sum_{\sigma} \operatorname{sign}(\sigma) \omega\left(v_{1}, \ldots, v_{k}\right) \eta\left(v_{k+1}, \ldots, v_{k+l}\right)
$$

where $\sigma=\left(i_{1}, \ldots, i_{k+l}\right.$ is a permutation of $\{1, \ldots, k+l\}$ such that $i_{1}<\cdots<i_{k}$ and $i_{k+1}<$ $\cdots<i_{k+l}$

Corollary 110 Let $\omega \in \bigwedge^{k}(V)^{\star}, \eta \in \bigwedge^{l}(V)^{\star}$ and $\phi \in \bigwedge^{m}(V)^{\star}$. Then

- $(\omega \wedge \eta) \wedge \phi=\omega \wedge(\eta \wedge \phi)$
- $\omega \wedge \eta=(-1)^{k l}(\eta \wedge \omega)$
- The wedge product is linear in each of its arguments, e.g.:

$$
\begin{aligned}
\omega \wedge(c \eta) & =c(\omega \wedge \eta), \quad \text { for } c \in \mathbb{R} \\
\omega \wedge(\eta+\phi) & =\omega \wedge \eta+\omega \wedge \phi, \quad \text { in case } l=m
\end{aligned}
$$

11.2 Pull-Back

Definition 111 Let $f: V \rightarrow W$ be a linear map between real vector spaces V and W. The pull-back of an alternating k-linear form $\omega \in \bigwedge^{k}(W)^{\star}$ is the alternating k-linear form $f^{\star} \omega \in \bigwedge^{k}(V)^{\star}$ defined by the rule

$$
f^{\star} \omega\left(v_{1}, \ldots, v_{k}\right)=\omega\left(f\left(v_{1}\right), \ldots, f\left(v_{k}\right)\right)
$$

where v_{1}, \ldots, v_{k} are arbitrary vectors in V
Proposition 112 Let $f: V \rightarrow W$ be a linear map between real vector spaces and let $\omega \in$ $\bigwedge^{k}(W)^{\star}, \eta \in \bigwedge^{l}(W)^{\star}$. Then

- $f^{\star} \omega$ is an alternating k-linear form on V
- f^{s} tar $: \bigwedge^{k}(W)^{\star} \rightarrow \bigwedge^{k}(V)^{\star}$ is linear
- $f^{s} \operatorname{tar}(\omega \wedge \eta)=f^{\star} \omega \wedge f^{\star} \eta$

Theorem 113 Let $f: U \rightarrow V$ and $g: V \rightarrow W$ be linear maps. Then $(g \circ f)^{\star}=f^{\star} \circ g^{\star}$: $\bigwedge^{k}(W)^{\star} \rightarrow \bigwedge^{k}(U)^{\star}$

Differential forms

Definition 114 Let U be an open subset on \mathbb{R}^{n}. A function

$$
\omega: U \times \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{k \text { factors }} \rightarrow \mathbb{R}, \quad \omega=\omega(x, v), x \in U, v \in \mathbb{R}^{n}
$$

is called a differential k form if for all fixed $x \in U$, the function $\omega(x, \cdot): \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is k-linear and alternating.

A differential k-form ω is C^{m}-smooth $(m \leq \infty)$ when it is C^{m} smooth as a function ω : $U \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Proposition 115 Let $\omega: U \times \mathbb{R}^{n k} \rightarrow \mathbb{R}$ be a differential k-form on U. Then there are unique functions

$$
\omega_{i_{1} \ldots i_{k}}: U \rightarrow \mathbb{R}, \quad i_{1}<\cdots<i_{k}
$$

such that

$$
\omega=\sum_{i_{1}<\cdots<i_{k}} \omega_{i_{1} \ldots i_{k}}(x) D x^{i_{1}} \wedge \cdots \wedge D x^{i_{k}}
$$

The k-form ω is C^{m} iff all functions $\omega_{i_{1} \ldots i_{k}}$ are C^{m}

Remark: Differential forms ω naturally act on vector fields.
Definition $116 A$ differential k-form ω of class C^{m} on $U \subset \mathbb{R}^{n}$ is an alternating k-linear over $C^{m}(U)$ map

$$
\omega: \mathcal{X}^{m}(U) \times \cdots \times \mathcal{X}^{m}(U) \rightarrow C^{m}(U)
$$

where $\mathcal{X}^{m}(U)$ is the space of all C^{m}-vector fields on U and $C^{m}(U)$ is the space of all C^{m} smooth functions on U

Proposition 117 Let $U \subset \mathbb{R}^{n}$ be open. If $\omega: U \times \mathbb{R}^{n k} \rightarrow \mathbb{R}$ is a differential k-form (in the sense of the first definition) of class C^{m}, then it induces an alternating k-linear over $C^{m}(U)$ map

$$
\tilde{\omega}: \mathcal{X}^{m}(U) \times \cdots \times \mathcal{X}^{m}(U) \rightarrow C^{m}(U)
$$

by setting $\tilde{\omega}\left(v_{1}, \ldots, v_{k}\right)(x)=\omega\left(x, F_{1}(x), \ldots, F_{k}(x)\right)$ where $v_{i}(x)=\left(x, F_{i}(x)\right)$. Conversely, every such map $\tilde{\omega}$ (differential k-form in the sense of the second definition) induces a C^{m} function

$$
\omega: U \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

such that $\forall x \in U, \omega(x, \cdot)$ is k-linear and alternating, by setting $\omega\left(x_{0}, c_{1}, \ldots, c_{k}\right)=\tilde{\omega}\left(v_{1}, \ldots, v_{k}\right)\left(x_{0}\right)$, where the vector fields $v_{i}(x)=(x, F(x))$ are C^{m} on U and such that $F_{i}(x)=c_{i}$ in a small neighbourhood of $x_{0} \in U$ (here $c_{i} \in \mathbb{R}^{n}$ are constant vectors)

11.3 Operations on differential forms

Definition 118 Let ω be a differential k-form on $U_{2} \subset \mathbb{R}^{m}$ and let $f: U_{1} \subset \mathbb{R}^{n} \rightarrow U_{2} \subset \mathbb{R}^{m}$ be a C^{1} map. The pull-back of ω under f is the differential k-form $f^{\star} \omega$ on U_{1} defined by

$$
f^{\star} \omega\left(x, c_{1}, \ldots, c_{k}\right)=\omega\left(f(x),\left.D f\right|_{x}\left(c_{1}\right), \ldots,\left.D f\right|_{x}\left(c_{k}\right)\right)
$$

meaning that at each x, we have the pull-back of alternating k-linear forms under linear map df between the corresponding tangent spaces

Proposition 119 Let $f: U_{1} \subset \mathbb{R}^{n} \rightarrow U_{2} \subset \mathbb{R}^{m}$ be of class (at least) C^{1}. The pull-back f^{\star} is a linear map. Moreover, it respects the wedge product: if ω and η are differential k-forms on U_{2}, then $f^{\star}(\omega \wedge \eta)=f^{\star} \omega \wedge f^{\star} \eta$

Proposition 120 If $f: U_{1} \subset \mathbb{R}^{n} \rightarrow U_{2} \subset \mathbb{R}^{m}$ and $g: U_{2} \rightarrow U_{3} \subset \mathbb{R}^{e}$ are C^{1} maps, then $(g \circ f)^{\star}=f^{\star} \circ g^{\star}$

11.3.1 Exterior derivative

Definition 121 Let ω be a differential k-form on $U \subset \mathbb{R}^{n}$ of class $C^{m}, m \geq 1$. The exterior derivative $D^{e x t} \omega$ of ω is the differential $(k+1)$-form on U defined by

$$
D^{e x t} \omega=\sum_{i_{1}<\ldots<i_{k}} D \omega_{i_{1} \ldots i_{k}}(x) \wedge D x^{i_{1}} \wedge \cdots \wedge D x^{i_{k}}
$$

where

$$
\omega=\sum_{i_{1}<\ldots<i_{k}} \omega_{i_{1} \ldots i_{k}}(x) D x^{i_{1}} \wedge \cdots \wedge D x^{i_{k}}
$$

is the unique expansion of ω with respect to the basis k-forms $D x^{i_{1}} \wedge \ldots \wedge D x^{i_{k}}, i_{1}<\ldots<i_{k}$

Proposition 122 The following properties of the exterior derivative $D^{\text {ext }}$ hold:

- \forall differential k-forms ω and η of class C^{1} and $\forall \lambda \in \mathbb{R}$, we have

$$
D^{e x t}(\lambda \omega+\eta)=\lambda D^{e x t} \omega+D^{e x t} \eta
$$

i.e. $D^{\text {ext }}$ is linear

- \forall diff. form ω and \forall function f of class C^{1},

$$
D^{e x t}(f \omega)=D f \wedge \omega+f D^{e x t} \omega
$$

- \forall diff. form ω and \forall map F of class C^{2}, we have

$$
F^{\star}\left(D^{e x t} \omega\right)=D^{e x t}\left(F^{\star} \omega\right)
$$

- \forall diff. form ω of class $C^{2}, D^{e x t}\left(D^{e x t} \omega\right)=0$

Remark: Note that for differential 0-forms of class C^{1}, we have $D^{e x t} f=D f$. Therefore, $D^{e x t}$ is an extension of the usual notion of the derivative to differential forms. Also note that unlike in the case of higher order derivatives $D^{r} f$ which might be non-zero for all $r \in \mathbb{N}$ we have that $D^{e x t} \circ D^{e x t} \equiv 0$, because of skew-symmetry of differential forms.

Note: In what follows, when considering differential forms we will use d to refer to both exterior derivative and 1-st differentials of functions. When talking about higher derivatives of maps, D will be used instead.

Definition 123 A C^{1} differential k-form ω on $U \subset \mathbb{R}^{n}$ is called closed if $d \omega \equiv 0$ on U.
$A C^{1}$ differential k-form ω on $U \subset \mathbb{R}^{n}$ is called exact if there exists a $k-1$ form η on U such that $\omega=d \eta$

Proposition 124 Every exact differential k-form ω on $U \subset \mathbb{R}^{n}$ is closed

12 Vector Fields, differentials forms and the classical operations

Definition 125 Vector Fields A vector field on $U \subset \mathbb{R}^{n}$ is a map

$$
v: U \rightarrow U \times \mathbb{R}^{n}, \quad v(x)=(x, F(x))
$$

that assigns to each $x \in U$ a vector $F(x) \in \mathbb{R}^{n}$ "at x " (here $F: U \rightarrow \mathbb{R}^{n}$ is some map). A vector field v is C^{m} on U when $v=(i d, F): U \rightarrow U \times \mathbb{R}^{n}$ (or equivalently $F: U \rightarrow \mathbb{R}^{n}$) is C^{m}

Definition 126 A vector field on \mathbb{R}^{n} is a map $X: \mathbb{R}^{n} \rightarrow T \mathbb{R}^{n}$, where $T \mathbb{R}^{n}$ is the tangent bundle of $\mathbb{R}^{n}\left(U \subset \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$, such that $\pi \circ X=i d_{\mathbb{R}^{n}}$. In other words, X is of the form $X(p)=(p, v(p))$. The vector field is C^{m} if the function v is C^{m}.

Proposition 127 If v is a (C^{m}-smooth) vector field, then $w=\langle v, \cdot\rangle$ is a (C^{m}-smooth) oneform

Definition 128 Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function on U. The vector field v on U such that

$$
\langle v, \cdot\rangle=d f
$$

is called the gradient vector field of f and is denoted by $\operatorname{grad} f$
Definition 129 Let $v: U \subset \mathbb{R}^{n} \rightarrow U \times \mathbb{R}^{n}$ be a differentiable vector field on U. The divergence of v is the function $\operatorname{div}(v): U \rightarrow \mathbb{R}$ defined by

$$
\operatorname{div}(v)(x)=\left.\operatorname{trace} D F\right|_{x}
$$

where $v=(x, F(x))$ and $D F$ is expressed in Euclidean coordinates. Note that writing

$$
F=\left(f_{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, f_{n}\left(x^{1}, \ldots, x^{n}\right)\right)
$$

we have $\operatorname{div}(v)=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x^{i}}$
Definition 130 Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function. The Laplacian $\Delta f: U \rightarrow \mathbb{R}$ is a function on U given by

$$
\Delta f=\operatorname{div}(\operatorname{grad} f)
$$

In Euclidean coordinates, $\Delta f=\sum_{i=1}^{n} \frac{\partial^{2} f_{i}}{\partial x^{i 2}}$
Definition 131 (Hodge star) Given a differential k-form $\omega \in \Omega^{k}(U), U \subset \mathbb{R}^{n}$, its Hodge star is the $(n-k)$-form $\star \omega \in \Omega^{n-k}(U)$ defined by extending the assignment

$$
\star d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}=(-1)^{\sigma} d x^{j_{1}} \wedge \cdots \wedge d x^{j_{n-k}}
$$

where $i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{n-k}$ and $\sigma\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)$ is the permutation of $\{1, \ldots, n\}$ by sky-linearity.

Remark: Note that for a k-form ω on $U \subset \mathbb{R}^{n}, \star \star \omega=(-1)^{k(n-k)} \omega$
Proposition 132 Let v be a differentiable vector field on $U \subset \mathbb{R}^{n}$. Then the divergence of v satisfies

$$
\operatorname{div}(v)=\star(d \star \omega), \quad \text { where } \omega=\langle v, \cdot\rangle
$$

Proposition 133 Let $f: U \subset \mathbb{R}^{n}$ be a C^{2} function. Then

$$
\Delta f=\operatorname{div}(\operatorname{grad} f)=\star d \star f
$$

Definition 134 (Rotational) Let v be a differentiable vector field on $U \subset \mathbb{R}^{n}$. The rotational of v is the $(n-2)$-form $\operatorname{rot}(v)$ defined by

$$
\operatorname{rot}(v)=\star(d \omega), \quad \text { where } \omega=\langle v, \cdot\rangle
$$

If $n=3$, then $\operatorname{rot}(v)$ is a $(3-2=1)$-form, and hence there is a vector field, called the curl of v and denoted by $\operatorname{curl}(v)$ such that

$$
\langle\operatorname{curl}(v), \cdot\rangle=\operatorname{rot}(v)=\star(d \omega)
$$

Proposition 135 Consider \mathbb{R}^{3} with Euclidean coordinates x, y, z and let $v=(i d, F): U \subset$ $\mathbb{R}^{3} \rightarrow U \times \mathbb{R}^{3}$, where $F=\left(f_{1}, f_{2}, f_{3}\right)$, be a differentiable vector field on U. Then

$$
\operatorname{curl}(v)=\nabla \times F=\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}, \frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}, \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right)
$$

Remark: Let $\alpha_{1}=\left\langle v_{1}, \cdot\right\rangle$ and $\alpha_{2}=\left\langle v_{2}, \cdot\right\rangle$ be linear functions on \mathbb{R}^{3} with standard inner product then $\left\langle v_{1} \times v_{2}, \cdot\right\rangle=\star\left(\alpha_{1} \wedge \alpha_{2}\right)$

Proposition 136 Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function and $v: U \rightarrow U \times \mathbb{R}^{n}$ be a C^{2} vector field. Then

- $\operatorname{rot}(\operatorname{grad} f)=0$
- $\operatorname{curl}(\operatorname{grad} f)=0(n=3)$
- $\operatorname{div}(\operatorname{curl} v)=0 \quad(n=3)$

13 Integration of differential forms

Definition $137 A$ subset $M_{k} \subset \mathbb{R}^{n}$ is a regular C^{∞}-smooth k-dimensional surface in \mathbb{R}^{n} if for every point $x \in M_{k}$ there exists an open neighbourhood $x \in U$ in \mathbb{R}^{n} such that

$$
M_{k} \cap U=\{(z, y) \in U \mid y=F(z)\}
$$

in a graph of a smooth map $F: V \subset \mathbb{R}^{k} \rightarrow \mathbb{R}^{n-k}$, where $z=\left(x^{i_{1}}, \ldots, x^{i_{k}}\right), y=\left(x^{j_{1}}, \ldots, x^{j_{n-k}}\right)$ with $i_{1} \ldots i_{k}, j_{1} \ldots j_{n-k}$ all distinct

Definition 138 A regular level set $M_{c}=\{f=c\}$ of a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,i.e., such that $\operatorname{grad} f(x) \neq 0$ for every $x \in M_{c}$, is a regular C^{∞}-smooth $(n-1)$-dimensional surface in \mathbb{R}^{n}, whenever M_{c} is non-empty. More generally,

$$
M_{c_{1}, \ldots, c_{n-k}}=\left\{x \in \mathbb{R}^{n} \mid F(x)=\left(c_{1}, \ldots, c_{n-k}\right)\right\} \neq \emptyset
$$

of a C^{∞}-smooth map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-k}$, i.e., such that rank $\left.D F\right|_{x}=n-k \forall x \in M_{c_{1}, \ldots, c_{n-k}}$, is a regular C^{∞}-smooth k-dim surface in \mathbb{R}^{n}.

Definition 139 Let M^{k} be a regular $C^{\infty}{ }_{-s m o o t h ~ s u r f a c e ~ i n ~} \mathbb{R}^{n}$. A differential k-form on M^{k} is a field of alternating k-linear functions

$$
\left.\omega\right|_{x}: T_{x} M^{k} \times \cdots \times T_{x} M^{k} \rightarrow \mathbb{R}
$$

where $T_{x} M^{k}=\left\{v \in \mathbb{R}^{n} \mid v=\dot{\gamma}(0)\right.$, with γ a C^{1} differential curve in $M^{k} \subset \mathbb{R}^{n}$ with $\left.\gamma(0)=x\right\}$ is the tangent space of M^{k} at x

Definition 140 A smooth regular k-dim. surface M_{k} is called orientable if it admits a smooth nowhere vanishing top (=of degree k) form

Theorem $141 A$ compact regular C^{∞} smooth k-surface M^{k} in \mathbb{R}^{n} is a finite union of $F_{i}\left(D_{i}\right)$ where

$$
F_{i}: \mathbb{R}^{k} \rightarrow M^{k} \subset \mathbb{R}^{n}, \quad F_{i} \in C^{\infty}\left(\mathbb{R}^{k}\right)
$$

is such that F_{i} is a C^{∞} diffeomorphism onto its image in $M^{k}, D_{i} \subset \mathbb{R}^{n}$ is a k-dim compact convex polyhedron and $F_{i}\left(\right.$ int $\left.D_{i}\right) \cup F_{j}\left(\right.$ int $\left.D_{j}\right)=, i \neq j$

Definition 142 Any C^{1} differentiable map $F: D \subset \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ where D is a compact convex k-dim. polyhedron in \mathbb{R}^{k}, together with an orientation \pm on D, is called k-dimensional cell. If $\sigma=(F, \pm D)$ is a k-dim cell and ω is a k-form on \mathbb{R}^{n}, then

$$
\int_{\sigma} \omega=\int_{D} F^{\star} \omega= \pm \int_{D} g(x) d x^{1} \ldots d x^{k}
$$

where $F^{\star} \omega=g(x) d x^{1} \ldots d x^{k}$
Definition $143 A k$-chain in \mathbb{R}^{n} (or a regular smooth surface $M^{e} \subset \mathbb{R}^{n}$) is a finite formal sum of the form

$$
c_{k}=\sum_{i=1}^{n} m_{i} \sigma_{i}
$$

where $m_{i} \in \mathbb{Z}$ and $\sigma_{i}=\left(F_{i}, \pm D_{i}\right)$ is a k-cell, take up to the natural equivalence relation:

$$
m_{1} \sigma+m_{2} \sigma=\left(m_{1}+m_{2}\right) \sigma, \quad-\sigma=(F,-D)
$$

The set of chains because an abelian group under the formal sum operation and we define the integral of a differential k-form ω over a k-chain C_{k} as

$$
\int_{C_{k}} \omega=\sum_{i=1}^{n} m_{i} \int_{\sigma_{i}} \omega
$$

where $C_{k}=\sum_{i=1}^{n} m_{i} \sigma_{i}$
Proposition 144 Let D_{1} and D_{2} be two compact convex polyhedral in \mathbb{R}^{k} and let

$$
F: U \rightarrow V, \quad D_{1} \subset U \subset \mathbb{R}^{k}, D_{2} \subset V \subset \mathbb{R}^{k}
$$

be a C^{1} smooth diffeomorphism sending D_{1} onto D_{2} and preserving the orientation on \mathbb{R}^{k}. Then for any $\left(C^{0}\right) k$-form ω on D_{2}

$$
\int_{D_{1}} F^{\star} \omega=\int_{D_{2}} \omega
$$

Corollary 145 Let $\sigma=(f, D)$ be a k-cell and ω a differential k-form in \mathbb{R}^{n}. If $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is a C^{1} diffeomorphism, then

$$
\int_{F^{-1}(\sigma)} F^{\star} \omega=\int_{\sigma} \omega
$$

where $F^{-1}(\sigma)=\left(f \circ F, F^{-1}(D)\right)$. Similarly, if $C_{k}=\sum_{i=1}^{n} m_{i} \sigma_{i}$ is a k-chain, then

$$
\int_{F^{-1}\left(C_{k}\right)} F^{\star} \omega=\int_{C_{k}} \omega
$$

where $F^{-1}\left(C_{k}\right)=\sum_{i=1}^{k} m_{i} F^{-1}\left(\sigma_{i}\right)$

13.1 Stokes's theorem

Definition 146 Let $\sigma(F, D), F: D \subset \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a k-cell. The boundary $\partial \sigma$ is defined by

$$
\partial \sigma=\sum_{i} \sigma_{i}^{k-1}, \quad \sigma_{i}^{k-1}=\left(\left.F\right|_{D_{i}}, D_{i}\right)
$$

where D_{i} are the faces of D oriented by the outward normal \vec{n}. The boundary ∂C_{k} of a k-chain is defined by

$$
\partial C_{k}=\sum_{j=1}^{n} m_{j} \partial \sigma_{j}
$$

Proposition 147 For a k-chain $C_{k}, \partial \partial C_{k}=0$
Theorem 148 (Stokes's theorem) Let ω be a C^{1}-smooth differential $(k-1)$-form on \mathbb{R}^{n} (or on a compact regular orientable C^{∞}-smooth surface M in \mathbb{R}^{n}). Then for every k-chain C_{k} in \mathbb{R}^{n} (contained in M)

$$
\int_{C_{k}} d \omega=\int_{\partial C_{k}} \omega
$$

Corollary 149 Let M be a compact regular orientable C^{∞}-smooth k-surface in \mathbb{R}^{n} with boundary ∂M. Then for every C^{1}-differentiable $(k-1)$-form ω on M,

$$
\int_{M} d \omega=\int_{\partial M} g^{*}(\omega)
$$

where $g: \partial M \rightarrow M$ denotes the inclusion map.
Definition $150 A$ subset $M^{k} \subset \mathbb{R}^{n}$ is a regular C^{∞}-smooth k-dimensional surface with boundary if for every point $x \in M^{k}$ there exists an open neighbourhood U of x in \mathbb{R}^{n} such that

$$
M^{k} \cap U=\{(z, y) \in U \mid y=F(z)\}
$$

is a graph of a smooth map $F: W \subset \mathbb{R}^{k} \rightarrow \mathbb{R}^{n-k}$, where $z=\left(x^{i_{1}}, \ldots, x^{i_{k}}\right), y=\left(x^{j_{1}}, \ldots, x^{j_{n-k}}\right)$ with $i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}$ all distinct and W is either

- an open ball $B_{r}\left(z_{0}\right)$ or
- a part of $B_{r}\left(z_{0}\right)$ cut out by a C^{∞} function $f: W=B_{r}\left(z_{0}\right) \cap\{f \leq 1\}$
assuming $\{f=1\}$ is a regular level set for f on \mathbb{R}^{k}
Corollary 151 (Green's theorem) Let $U \subset \mathbb{R}^{2}$ be an open bounded subset in \mathbb{R}^{2} with ∂U a closed regular C^{∞}-smooth curve. If ω is a C^{1}-smooth 1 -form on (a neighbourhood of) \bar{U}, then

$$
\int_{M=\bar{U}} d \omega=\int_{C=\partial \bar{U}} \omega
$$

which in coordinates (x, y) on \mathbb{R}^{2} reads as

$$
\int_{M}\left(\frac{\partial b}{\partial x}-\frac{\partial a}{\partial y}\right) d x \wedge d y=\int_{C} a(x, y) d x+b(x, y) d y
$$

where $\omega=a(x, y) d x+b(x, y) d y$

Corollary 152 (Divergence Theorem) Let $U \subset \in \mathbb{R}^{3}$ be an open bounded subset in \mathbb{R}^{3} with ∂U a closed regular C^{∞}-smooth 2 -surface. Let v be a C^{1} vector field on (a neighbourhood of) \bar{U}. Then

$$
\int_{M=\bar{U}} \operatorname{div}(v)=\int_{S=\partial \bar{U}} i_{v}(\omega)
$$

where $\omega=d x \wedge d y \wedge d z$ is the standard volume form on \mathbb{R}^{3}. In coordinates, if v has components $v^{1}=v^{1}(x, y, z), v^{2}=v^{2}(x, y, z), v^{3}=v^{3}(x, y, z)$, the r.h.s

$$
\int_{S=\partial \bar{U}} i_{v}(\omega)=\underbrace{\int_{S=\partial \bar{U}} v^{1} d y \wedge d z+v^{2} d z \wedge d x+v^{3} d x \wedge d y}_{\int_{S} v \cdot d \vec{n} \text { flux through } S}
$$

Corollary 153 (Curl theorem) Let $M^{2} \subset \mathbb{R}^{3}$ be a compact regular oriented C^{∞}-smooth two-surface in \mathbb{R}^{3} with boundary ∂M^{2}. Let v be a C^{1} one-form in \mathbb{R}^{3}. Then

$$
\int_{M^{2}} \operatorname{curl}(v) \cdot d \vec{n}=\int_{M^{2}} \star \operatorname{rot}(v)=\int_{\partial M^{2}} \omega
$$

where $\omega=\langle v, \cdot\rangle$, with $\langle\cdot, \cdot\rangle$ the standard inner product on \mathbb{R}^{3}
Corollary 154 (Gradient Theorem) Let $\sigma=(\gamma,[a, b]), \gamma:[a, b] \rightarrow \mathbb{R}^{n}$ be a 1 -cell in \mathbb{R}^{n} and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1}-function. Then

$$
\int_{\sigma} d f=f(\sigma(b))-f(\sigma(a))
$$

Theorem 155 (Brouwer's fixed point theorem) Let $\overline{B_{r}(0)} \subset \mathbb{R}^{n}$ be a closed ball in \mathbb{R}^{n} around the origin and $f: \bar{B}_{r}(0) \rightarrow \bar{B}_{r}(0)$ be a C^{2}-smooth map. Then exists at least one fixed point $x_{0} \in \overline{B_{r}(0)}$:

$$
f\left(x_{0}\right)=x_{0}
$$

